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5.3. Quantitative texture analysis and combined analysis

D. Chateigner, L. Lutterotti and M. Morales

5.3.1. Introduction

For many solids, the growth of single crystals with sufficiently

perfect crystallinity is not easy to manage, and is sometimes

impossible. On the other hand, a perfectly randomly oriented

powder is often impossible to obtain, or may even be undesirable

if the anisotropic character of the sample is to be maintained.

Consequently, any nondestructive characterization technique

(for example diffraction) faces the difficulty of analysing textured

samples, which are in a state between a perfect single crystal and

a perfect powder. Such ‘real samples’ are obtained by complex

techniques (alignment under uniaxial pressure, magnetic or

electric fields, thermal gradients, flux or substrate growth, and

combinations of these), and sample preparation is often difficult

and time consuming. Unfortunately, when samples are crystal-

lographically oriented to benefit from the intrinsic anisotropic

properties of the constituent crystals, many characterization

techniques (i.e. Rietveld analysis; Rietveld, 1969) are not

appropriate or require sample grinding. Very often this grinding

is not acceptable, as in the case of rare samples (for example

fossils or comets), when grinding modifies the physical properties

of the samples themselves (residually stressed materials), or

when grinding is simply not possible (thin films).

It then becomes crucial to quantitatively take the textured

character of the measured samples into account, either inde-

pendently of other parameters that are accessible to diffraction

(phase content, stresses, particle sizes and shapes), as in quanti-

tative texture analysis (QTA), or to take these parameters into

account by refining them all together, as in the combined-analysis

(CA) methodology.

In this chapter, we introduce the various aspects of QTA and

describe the additional information that CA can yield for the full

characterization of real materials. QTA is most commonly

applied because the existence of texture often determines the

characteristics of the sample.

5.3.2. Crystallographic quantitative texture analysis (QTA)

Even though QTA was developed in the 1960s, the current

literature shows that some qualitative information can still be

usefully obtained by the simple ‘classical’ scans used by diffrac-

tionists. Such classical scans can be the usual one-dimensional

�–2� or ! scans (rocking curves) in reflection mode, using point

or position-sensitive detectors, or even single images in trans-

mission. We should not forget that such scans can provide

(depending on the texture itself) very restricted textural infor-

mation, which has been thoroughly discussed in Chateigner

(2010). There is then a priori no justification for using such

limited views of texture, particularly with the recent technical

advancements in sources and detectors that make the rapid

acquisition of full texture scans available.

5.3.2.1. Orientation distribution (OD)

5.3.2.1.1. The orientation space H

Defining the orientation of a crystal requires the location of at

least two directions of the crystal in a macroscopic reference

frame. The definition of two reference frames (Fig. 5.3.1), one

linked to the sample, KA = (xA, yA, zA), or (100, 010, 001), and the

other to each of the crystals in the sample,KB, is thus required. In

order to make these two frames coincident (Fig. 5.3.2), one needs

three Euler angles, �c, �c, �c, forming a triplet called the orien-

tation component g = {�c, �c, �c}. The angles �c and �c determine

the orientation of the [001]* crystallite direction in KA and are

called the co-latitude (or pole distance) and azimuth, respec-

tively, while �c defines the location of another crystallographic

Figure 5.3.1
Crystal and sample reference frames KB = (xB, yB, zB) and KA = (xA, yA,
zA). Only one crystallite is shown.

Figure 5.3.2
Definition of the three Euler angles �c, �c and �c that define the
orientation of one crystallite frame KB = (a, b, c) of an orthogonal crystal
cell in the sample coordinate system KA. Note that 100, 010 and 001 are
not Miller indices but are vectors referring to an orthonormal frame
aligned with KA.
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direction, chosen as [010]* [in the (a, b) plane

for orthogonal crystal cells].

The ensemble of all possible values of g

defines the orientation space, or H space.

Note that we use H here (rather than the

usual ‘G space’ for QTA) after the descrip-

tion of orientation symmetry of Curien

(1971). An infinite number of possibilities for

the choice of Euler angles exist, but the two

most commonly used are those of Roe–

Matthies (Roe, 1965; Matthies et al., 1987)

and Bunge (Bunge, 1969). We use the former

here, for which KA is brought coincident to

KB by the operation g: [KA 7! KB] using the

three following rotations:

(i) rotation of KA about the axis ZA through

the angle �c: [KA 7! K0A]; associated

rotation g1 = {�c, 0, 0},
(ii) rotation ofK0A about the axis Y 0A through

the angle �c: [K0A 7! K00A]; associated

rotation g2 = {0, �c, 0},
(iii) rotation of K00A about the axis Z00A through the angle �c: [K

00
A

7! K000A k KB]; associated rotation g3 = {0, 0, �c}.
Finally, we obtain

g ¼ g1 g2 g3 ¼ f�c; 0; 0g f0; �c; 0g f0; 0; �cg ¼ f�c; �c; �cg:

The choice of KA has historically been dependent on the field

of science. In metallurgy, in dealing with the rolling of metals and

alloys (Coulomb, 1982), the normal to the rolling plane (ND), the

rolling direction (RD) and its transverse (TD) are typically

chosen. For geologists, the sample axes are aligned with respect to

the lineation direction and foliation plane, with the track from the

latter generally being aligned with the lineation on the pole

figures (Wenk, 1985). The use of QTA in molluscan studies

(Chateigner et al., 2000) imposed the choice of a frame linked to

the mollusc shell growth, margin and normal directions (G,M and

N, respectively). In thin-film analyses (Chateigner & Erler, 1997),

for which a heteroepitaxial relationship between the film and the

underlying single-crystal substrate is generally desired, the

sample frame is aligned with the main crystallographic directions

of the substrate. In the case of unidirectional experimental

environments such as magnetic fields (Morales et al., 2003), fibre

spinning, axial pressure (Wenk et al., 1996), hot forging (Guil-

meau et al., 2003), spin coating (Ricote & Chateigner, 1999) and

self-deposition in a liquid (Manceau et al., 1998), the unique

axis (of loading, field or spinning) is generally aligned with

the zA pole-figure axis. When a combination of several loads

is applied, such as a magnetic field and a perpendicular

thermal gradient (Durand et al., 1995), the axis of one load is

aligned with zA while the other is parallel to xA or yA. Using

centrifugation, the axis of rotation of the centrifugation is not

generally the axis along which the crystal orientation is forced

(Gridi-Bennadji et al., 2009), because the pressure axis resulting

from centrifugation is radially distributed and is often placed

along zA in the pole figures, and there is no in-plane alignment in

the sample.

5.3.2.1.2. The orientation distribution (OD) or orientation
distribution function (ODF)

Another concept is needed when dealing with an assembly of

many crystals: the orientation distribution of crystallites (or OD),

f(g). This function, which can either be represented by an

analytical function (ODF) or not (OD), represents the statistical

distribution of the orientations of the crystallites in a poly-

crystalline aggregate. It is defined by

dVðgÞ
V
¼ 1

8�2
f ðgÞ dg; ð5:3:1Þ

where dg ¼ sin �c d�c d�c d�c is the orientation element (Fig.

5.3.2) in the orientation space. The H space is constructed from

the rotation groups of the crystallographic and sample symmetry

(and the inversion centre in normal diffraction). V is the irra-

diated volume and dV(g) is the volume of crystallites which have

an orientation between g and g + dg.

f(g) is consequently the volume density of crystallites oriented

in dg. It is measured in m.r.d. (multiples of a random distribution)

and normalized to the value fr(g) = 1 for a sample without any

preferred orientation (random). The f(g) values are orientation

distribution densities, and range from 0 (an absence of crystallites

oriented in dg around g) to infinity (for some of the H-space

values of single crystals). Since V is by definition 100%, the

normalization condition of f(g) over the whole orientation space

is

R2�

�c¼0

R�

�c¼0

R2�

�c¼0
f ðgÞ dg ¼ 8�2: ð5:3:2Þ

5.3.2.1.3. Pole figures

5.3.2.1.3.1. Mathematical expression

Pole figures, Ph(y), are representations of the distribution of a

given h = hhkli* direction in KA located in Y space (Fig. 5.3.3a).

They represent the volume density of crystallites oriented in dy,

i.e. between (#y, ’y) and (#y + d#y, ’y + d’y),

dVðyÞ
V
¼ 1

4�
PhðyÞ dy; ð5:3:3Þ

where V is the irradiated volume and dV(y) is the volume of

crystallites which have an orientation with a direction h between

y and y + dy, with dy = sin#yd#yd’y. The factor 1/4� arises

from the normalization of the pole figures into distribution

densities,

Figure 5.3.3
(a) Ph(y) diffraction pole figure for one crystallite. The direction y is associated with the [hkl]*
vector. (b) Pole figure of a texture component centred on the previous y, with a Gaussian shape
with 10� FWHM, for h = h001i* of an orthorhombic crystal structure.
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R2�

’y¼0

R�

#y¼0
Phð#y; ’yÞ sin#y d#y d’y ¼ 4�: ð5:3:4Þ

Every pole figure of a random sample will exhibit the same

density Ph(y) = 1 m.r.d., whatever the value of y.

5.3.2.1.3.2. Diffraction pole figures and orientation of planes

At a Bragg angle corresponding to the {hkl} planes and for a

direction y of the sample, all of the planes such that hky are in the
diffraction condition, whatever their rotation around y. Conse-

quently, diffraction only probes a direction, not an orientation,

and we need at least to determine the location of two directions

of a plane to know its orientation. Diffraction only probes Ph(y),

not f(g) directly, and we need to measure at least several pole

figures Ph(y) to determine f(g).

Again, using normal diffraction Friedel’s law applies and one

cannot differentiate the diffracted intensity Ih from I�h. Conse-
quently, the measured (reduced) pole figures are centrosym-

metric and even objects, such that

~PhðyÞ ¼ 1
2½PhðyÞ þ P�hðyÞ�: ð5:3:5Þ

5.3.2.1.3.3. From diffraction measurements to pole figures and
ODs

Diffraction pole figures are usually measured using a four-

circle diffractometer with regular increments in tilt (�) and

azimuth (’) rotation axes, or in kappa geometry. Both reflection

(Schulz, 1949a) and transmission (Schulz, 1949b; Field &

Merchant, 1949) modes can be used, with point, one-dimensional

or two-dimensional detectors, which can be either linear, flat or

curved.

Prior to any measurement, it is necessary to know whether the

data available from a given instrument can provide a correct OD

characterization (i.e. how many pole figures are necessary and

over which range each pole figure has to be measured) in order to

permit an OD refinement. Helming (1992) addressed the ques-

tion with the minimum pole-figure range, using the minimum pole

density set concept of Vadon (1981). Such an approach defines as

a necessary condition that the number and range of pole figures

must be large enough such that any crystal orientation can be

determined unambiguously. Using discrete data points, this

requires that at least three projection paths ~’ from pole figures

pass through every OD cell. Complete OD coverage requires

quite a large amount of data (typically 1300 measured points per

pole figure, with several pole figures being necessary for low

resolution using a 5� grid), which is nowadays accessible using

multiple detectors.

The goniometer setting for each point can be described by

three angles: !, � and ’. Additionally, if the diffraction point that

we consider (the detector or pixel position) is outside the usual 2�
diffraction plane, another angle � is necessary along the Debye

ring. We can define the resulting rotation matrix R as the product

of the corresponding 3 � 3 matrices,

R ¼ �HHXXU; ð5:3:6Þ
and the pole-figure angles can be obtained:

cos#y ¼ R33;

tan ’y ¼ R31=R32: ð5:3:7Þ
Depending on the experimental setup, various corrections

have to be applied to the data. Localization corrections are those

that transform the angular coordinates of the data from the

diffractometer space S, where the scattered intensities are

measured, to the space in which modelling occurs, for instance

the pole-figure space Y (Bunge et al., 1982; Heizmann &

Laruelle, 1986; Heidelbach et al., 1999; Chateigner, 2010). Also,

depending on the sample itself, proper corrections for

defocusing and background (Chernock & Beck, 1952; Gale &

Griffiths, 1960; Holland, 1964; Feng, 1965; Tenckhoff, 1970;

Couterne & Cizeron, 1971; Huijser-Gerits & Rieck, 1974),

fluorescence, absorption and volume changes (Chateigner et al.,

1992, 1994a,b, 1995; Liu et al., 2003) have to be carried out

during sample rotations. The representation of pole figures is

usually by stereographic (or equal-angular) projections. The

main drawback of such a representation is that the density levels

at the centre of the pole figures appear to be overrepresented

compared with those near the equator. We then prefer to plot

pole figures using Schmidt (or Lambert) projections (or equal-

area projections), which offer representations with nearly equal

surface elements at the centres and peripheries of pole figures

(Kocks et al., 1998).

After the previous corrections, one obtains the so-called

diffraction (direct) pole figures, Ih(y). However, these depend on

the porosity, crystalline state and other features of the sample,

and to compare textures between samples the normalized pole

figure Ph(y) has to be calculated.

Such normalization, calculations and refinements of the ODs

using various algorithms are implemented in software such as the

Berkeley Texture (BEARTEX) package (Wenk et al., 1998), the

Preferred Orientation Package – Los Alamos (popLA) package

(Kocks et al., 1994), the LaboTex texture-analysis software

(Pawlik & Ozga, 1999) and the MATLAB toolbox for quantita-

tive texture analysis (MTEX; Hielscher & Schaeben, 2008). The

last is freeware. Two other programs, Material Analysis Using

Diffraction (MAUD; Lutterotti et al., 1999) and the General

Structure Analysis System (GSAS; Von Dreele, 1997; Larson &

Von Dreele, 2000), are furthermore able to carry out Rietveld

analysis on large sets of data, giving access to many more material

characteristics.

5.3.2.1.3.4. Pole-figure normalization

If a given Ih(y) pole figure has been measured completely

(all of the y values could be obtained), it can be normalized

Figure 5.3.4
Relationship between the three-dimensional object f (g) and the pole
figures Ph(y). Several OD boxes correspond to each pole figure cell, and
each OD box is linked to several pole-figure cells.
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directly. Since whatever the texture state of a given sample

is (i.e. whether the sample exhibits a texture or is randomly

oriented) the total intensity scattered by the sample Ith must be

the same, the sum of all intensities Ih(y) collected on the hemi-

sphere is the same, all other sample characteristics being

constant:

Ith ¼
R2�

’y¼0

R�=2

#y¼0
Ihð#y; ’yÞ sin#y d#y d’y: ð5:3:8Þ

One can then obtain the intensity Nh that would diffract from

this sample for the h pole figure if it was randomly oriented,

Nh ¼ Ith

�
R2�

’y¼0

R�=2

#y¼0
sin#y d#y d’y; ð5:3:9Þ

which is necessary for calculation of the

normalized pole figure (expressed in m.r.d.

units),

PhðyÞ ¼
IhðyÞ
Nh

: ð5:3:10Þ

However, experimental considerations

mean that the pole figures are generally not

measured completely, and the Nh factors are

usually refined during the OD calculation

(see Section 5.3.2.3.1).

5.3.2.2. The fundamental equation of quan-
titative texture analysis

Since a pole figure measures the distri-

bution of only one direction type hhkli*, it
does not probe an orientation directly.

Phrased differently, any rotation around this

specific vector by an angle ~’ results in the

same diffracted intensity. From (5.3.1) and

(5.3.3), one can obtain the fundamental

equation of QTA,

PhðyÞ ¼
1

2�

R

hky
f ðgÞ d ~’; ð5:3:11Þ

which represents the fact that each pole

figure (which is a two-dimensional object)

is a projection along a certain path ~’ of

the OD (a three-dimensional object) which

depends on the crystal symmetry (Fig. 5.3.4).

Each cell of a given pole figure will then be

an average over several cells of the OD, and

each cell of the OD will be measured by one

or more cells from the pole figures. The

larger the number of pole-figure cells that

measure a specific OD cell, the more

statistically reliable the measurement of this

OD is. In practice, one has to measure the

largest number possible of reliable (suffi-

ciently intense) pole figures to define the

OD with the best resolution available.

For instance, an OD of a hexagonal

system represented by a series of �c sections
(Fig. 5.3.5a) may reveal a maximum pole

density for a �c value of 35�. The corre-

sponding {100} and {001} pole figures (Fig.

5.3.5b) illustrate the meaning of �c in the pole-figure space for

this single-component texture. In the {001} pole figure, the pole

maximum is located at (’y, #y) = (�c, �c) = (85�, 80�). Since �c
locates the b axis, with this latter being represented by the {100}

pole figure, �c = 35� is the angle between the equator and b in

this pole figure. Users should not be afraid to build a three-

dimensional model of the unit-cell axes to assist in interpreting

such pole figures.

Let us mention at this point that the pole figures that are

obtained using normal diffraction methods are so-called

reduced pole figures, ~Ph(y). Friedel’s law requires that the

measured pole figures are superpositions of +h and �h true

pole figures. This fact (which is even the case for anomalous

Figure 5.3.5
(a) An OD as �c sections and (b) as {100} and {001} pole figures.
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scattering in the case of centrosymmetric crystals) leads to the

presence of ‘ghost’ phenomena (Matthies & Vinel, 1982;

Matthies et al., 1987). The true, unreduced or ‘complete’ pole

figure is defined as

PhðyÞ ¼ ~PhðyÞ þ ~~PhðyÞ; ð5:3:12Þ
in which ~~PhðyÞ is the nonmeasured part of the pole figures. We

will not take account of this here since ghost suppression, if

possible, would require anomalous diffraction and very intense

beams. Instead, theoretically derived ghost-correcting approx-

imations can be used. However, it should be strongly emphasized

here that in the case of noncentrosymmetric crystal symmetry the

ODF will not be determined completely.

5.3.2.3. Resolution of the fundamental equation

5.3.2.3.1. Generalized spherical-harmonics expansion

The solution proposed by Bunge & Esling (1982) consists of

describing the OD and the pole figures as series of generalized

spherical harmonics,

f ðgÞ ¼ P
1

�¼0

P�

m¼��

P�

n¼�
Cmn
� Tmn

� ðgÞ; ð5:3:13Þ

PhðyÞ ¼
P1

�¼0

4�

2�þ 1

P�

n¼��
kn�ðyÞ

P�

m¼��
Cmn
� k�m� ð�h	hÞ: ð5:3:14Þ

(5.3.11) still holds, and in this approach one has to determine

the Cmn
� coefficients, which are the proportions of the respective

Tmn
� ðgÞ and depend on the texture, from the experiments. The

Tmn
� ðgÞ are known generalized spherical harmonics which depend

on the crystal and texture symmetries. The series expands on both

even and odd values of �. In practice, the expansion on � cannot

be infinite and is limited to a value L, the maximum degree

of series expansion, which fixes the angular resolution of

the expansion. kn� and k�m� are spherical harmonics based on

Legendre polynomials (Bunge & Esling, 1982). The angles �h

and 	h are the spherical coordinates of the h direction in the

crystal reference frame. The number of Cmn
� coefficients and the

extension L to which the series in (5.3.14) has to be expanded in �
are also dependent on the crystal and texture symmetries.

If a certain number of pole-figure values are measured for

different crystallographic directions h, then a set of linear

equations can be set up using (5.3.14) and solved. There are three

commonly used methods to obtain the Cmn
� coefficients.

The first method can be used only if complete pole figures are

measured, in which case (5.3.14) can be written

PhðyÞ ¼
P1

�¼0

P�

n¼��
Fn
�ðhÞkn�ðyÞ ð5:3:14aÞ

and

Fn
�ðhÞ ¼

4�

2�þ 1

P�

m¼��¼0
Cmn
� k�m� ð�h; 	hÞ

P�

n¼��
Fn
� ðhÞkn�ðyÞ:

ð5:3:14bÞ
Multiplying both sides of (5.3.14a) by k�m� ðyÞ and integrating

over the whole sphere then yields

Fn
�ðhÞ ¼

R
PhðyÞk�n� ðyÞ dy

¼ R�

#y

R2�

’y

Phð#y; ’yÞk�n� ð#y; ’yÞ sin �y d#y d’y: ð5:3:14cÞ

The first step of the procedure is to compute the quantities

Fn
�ðhÞ from (5.3.14c) using the measured pole-figure values. In the

second step (transformation of coefficients), the system of linear

equations (5.3.14b) solved for the variables Cmn
� and f(g) is

determined.

The second method is used when it is not possible to measure

complete pole figures and consequently the quantities in (5.3.14c)

cannot be computed. In such a case, we refer the reader to

Chapter 7 of Bunge & Esling (1982) for a complete exposition.

The method also solves a system of linear equations to obtain the

harmonic coefficients:

PL

�¼0

PMð�Þ

m¼1

PNð�Þ

n¼1
Cmn
� �mm0

��0 

nn0
��0 �

P

h

amn
� ðhÞam0n0�0 ðhÞ

Ph

� �

¼ 0 ð5:3:14dÞ

and

Ph ¼ 2
R

B

½IhðyÞ�2 dy;

where B is the measured range in the pole figure,

amn
� ðhÞ ¼ 2

4�

2�þ 1
__k�m� ð�h; 	hÞ

R

B

IhðyÞ _kn�ðyÞ dy;


nn
0

��0 ¼ 2
R

B

_kn
0
�0 ðyÞ _kn�ðyÞ dy;

amm0
��0 ¼

4�

2�þ 1

4�

2�0 þ 1

P

h

__k�m� ð�h; 	hÞ __k�m0�0 ð�h; 	hÞ:

The third method uses the minimization procedure of (5.3.15)

to refine the harmonic coefficients by a least-squares method,

through which the Ph(y) are expressed using (5.3.14):

P

h

H ½IhðyÞ � NhPhðyÞ�2 dy ¼ min: ð5:3:15Þ

The integral is substituted by a summation over the entire

measured range of the pole figures (complete or uncomplete).

For strongly textured samples, the harmonics formulation

creates strong negative density values, in particular if the

expansion is restricted to too low an L value (which unfortu-

nately can be the case experimentally if insufficient pole figures

can be measured), and has been proved to be less adequate than

other discrete methods. Several methods have been developed to

correct for this artifact, all of which force negative densities to

zero (Wenk et al., 1988). However, forcing densities to zero

wherever they appear to be negative (if physically more

reasonable) may appear to be a little arbitrary. This feeling may

be reinforced by the fact that ghosts can also be positive, with

these latter not being subject to the same ‘correction’ possibi-

lities. However, one advantage of using a harmonic series is that it

provides the necessary material for the simplest approximation of

the mechanical property simulations with a limited number of

coefficients to be refined (the Cmn
� values). These coefficients can

also be computed from the OD obtained by other methods.

Since f(g) is a density, one should observe f(g) � 0 for all g

values, or ‘positivity’. From (5.3.5) we know that the measured or

reduced pole figures are centrosymmetric, and as a consequence

of (5.3.14) only the even-order coefficients can be determined by

diffraction. On the other hand there are even and odd coefficients

in f(g), and two different ODs have then to be considered,

depending on the parity of the � terms,

f ðgÞ ¼ f eðgÞ þ f oðgÞ; ð5:3:16Þ
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and here f(g) and fo(g) are two unknowns, with the even part of

the harmonic series f e(g) being the part that is accessible to

normal diffraction; the odd part is measurable in certain cases

using anomalous scattering. This phenomenon creates ghosts

(negative, unphysical distribution densities) in the OD (Matthies,

1979; Matthies & Vinel, 1982), which are undesirable for a

quantitative description of f(g). An approximate ‘ghost correc-

tion’ by estimating the odd coefficients is more or less compli-

cated in the harmonic formalism (Esling et al., 1982). Some

approaches for this correction have been developed such as the

‘positivity method’ (Dahms & Bunge, 1988; Wagner & Dahms,

1991) or the ‘GHOST’ and ‘quadratic’ methods (Van Houtte,

1983, 1991), all of which still permit some residual negative

densities (see Section 5.3.2.3.8).

5.3.2.3.2. Vector method

This discrete method (Ruer, 1976; Ruer & Baro, 1977; Vadon,

1981) works in direct space. Here, f(g) is represented by a vector

called the ‘texture vector’ fj, j = 1, . . . , J, with J the number of

cells in which f(g) is discretized. This number, of course, depends

on the resolution of the measurement scans of the pole figures.

Each pole figure is represented by Pi(h), i = 1, . . . , N, with N

being the number of cells of the pole figure. The fundamental

equation of QTA becomes

PiðhÞ ¼ ½rijðhÞ�f j; ð5:3:17Þ

in which rij(h) is a rectangular matrix. The fundamental problem

therefore consists of finding the solution to the system of linear

equations (5.3.17).

5.3.2.3.3. WIMV method

The WIMV approach [where WIMV is an acronym from

Williams (1968), Imhof (1982) and Matthies & Vinel (1982)] is an

iterative method which ensures a conditional ghost correction. It

is based on the numerical refinement of f(g) at step n + 1,

f nþ1ðgÞ ¼ N̂
f nðgÞf 0ðgÞ

QI
i¼1

QMhi

m¼1P
n
him
ðyÞ

h i1=IMhi
; ð5:3:18Þ

where the product extends over the I experimentally measured

pole figures and the multiplicity is Mh for all the poles. f
n(g) and

Pn
hðyÞ represent the refined values of f(g) and Ph(y) at the nth

step, respectively. N̂ is the normalization operation. The Pn
him
ðyÞ

values are calculated at each cycle with (5.3.12). The first step in

this procedure is to evaluate f0(g),

f 0ðgÞ ¼ N̂
QI

i¼1

QMhi

m¼1
P
exp
him
ðyÞ

� �1=IMhi

; ð5:3:19Þ

in which P
exp
h ðyÞ represents the measured pole figures. TheWIMV

algorithm maximizes the so-called ‘phon’ (orientation back-

ground or minimum value of the OD which represents the

randomly oriented fraction of the sample) and the texture

sharpness. While in the previous methods of OD resolution low

texture and crystal symmetries give rise to large amounts of data

to store and long computation times, the WIMV approach does

not depend greatly on these symmetries. Other methods have

been derived from WIMV and they maintain the same iteration

structure as depicted in (5.3.18); they are described in Sections

5.3.2.3.4, 5.3.2.3.5 and 5.3.2.3.6.

5.3.2.3.4. Arbitrarily defined cells (ADC) method

Essentially based on a WIMV-like algorithm (Pawlik, 1993),

the ADC method uses projection tubes instead of projection

paths. Each cell volume is then taken into account in the calcu-

lations, which gives a better smoothing scheme. A similar concept

is also used in the EWIMVapproach and is described in Section

5.3.2.3.6.

5.3.2.3.5. Entropy-maximization method

This method (Schaeben, 1988, 1991a,b) is based on the maxi-

mization of the texture ‘disorder’ or texture entropy, i.e. trying to

obtain the maximum texture phon from a set of experiments.

Following information theory (Shannon, 1948), the entropy

estimator in texture can be described by

S ¼ �P
i

f ðgiÞ ln f ðgiÞ; ð5:3:20Þ

which results in the iterative procedure

f nþ1ðgÞ ¼ f nðgÞ
YI

i¼1

YMhi

m¼1

PhðyÞ
Pn
hðyÞ

� �rn=IMhi

; ð5:3:21Þ

in which rn is a relaxation parameter such that 0 < rn < 1.

5.3.2.3.6. EWIMV method

When the WIMV calculation is inserted into the Rietveld

refinement procedure, it requires two additional steps:

(i) the extraction of the pole-figure or texture weights,

(ii) the interpolation of these weights to fit a regular grid

(imposed by the original WIMV algorithm).

The latter yields non-optimized values of the OD, particularly for

sharp textures and coarse irregular coverage of the OD. The

entropy-modified WIMV (EWIMV) method has proved to be

effective as an extension of the WIMV method (Lutterotti et al.,

2004; Morales et al., 2002). In this latter the OD cell values are

computed through an entropy iteration algorithm as in (5.3.21),

with incorporation of the reflection weights wh:

f nþ1ðgÞ ¼ N̂f nðgÞ
YI

h¼1

YMhi

m¼1

Phim
ðyÞ

Pn
him
ðyÞ

" #rnwh=IMhi

: ð5:3:22Þ

wh is introduced to take into account the different accuracy of

the more intense and less overlapped reflections with respect to

the smaller reflections, and is calculated analogously to the

weight factors in the Rietveld analysis. In (5.3.22), the integration

path is computed using a similar concept to the tube projection

introduced by the ADC method (Section 5.3.2.3.4). In the case of

EWIMV the projection for each integration point is calculated

using all of the neighbouring cells in the OD to that in which the

integration point falls, and the cell contribution is weighted using

the reciprocal of the distance between the centre of the cell and

the exact integration-point position. This has also a positive effect

on smoothing out the noise from the OD and increases the

experimental ‘coverage’ of the OD.

5.3.2.3.7. Component method

For very strong textures most of the orientation space cells

have zero values, while a few cells exhibit very large distribution

densities. In such cases the number of data to be acquired can be

tremendously large and tends to an unacceptable limit. However,

since the OD is described by a small number of orientations g,

simple functions can be used to represent it, and the g values are
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easily handled. Let a specific texture component (Helming, 1992)

centred at the orientation g = gc be represented by the model

function f c(g). The total OD can be represented by

f ðgÞ ¼ F þP
c

Icf cðgÞ; ð5:3:23Þ

where the intensity Ic is the volume fraction of crystallites

belonging to the component gc of distribution f c(g), and F

represents the volume fraction of randomly oriented crystallites.

For consistency, the components have to respect the normal-

ization conditions

F þP
c

Ic ¼ 1 and
P

c

f cðgÞ ¼ 1: ð5:3:24Þ

The f c(g) components can be represented by any function, i.e.

Gaussian, Lorentzian or elliptical distributions (Matthies et al.,

1987), that is normalized. Generally, two types of components are

used: spherical (Matthies, 1980, 1982) and fibre (Matthies et al.,

1988). Each component may then have a Gaussian or Lorentzian

character.

Spherical components are described by an orientation position

g0 in the OD space and a half-width at half-maximum, b, to

characterize the shape of the distribution (0 � b � 2�). Taking ~!
as the angular distance between an orientation g and g0, the

Gaussian spherical component can be written as

f ðg0; b; gÞ ¼ f ðS; ~!Þ ¼ NðSÞ expðS cos ~!Þ; ð5:3:24aÞ
with 0 � ~! = ~! (g0, g) � �, 0 � S � 1, S = ln2/[2sin2(b/4)];

NðSÞ ¼ ½I0ðSÞ � I1ðSÞ��1 ð5:3:24bÞ
is the normalization factor and In(x) are the modified Bessel

functions:

InðxÞ ¼
1

�

R�

0

exp½x cosðtÞ� cosðntÞ dt: ð5:3:24cÞ

Now the unreduced pole-figure value by integration using

(5.3.9) becomes

Phðg0; b; yÞ ¼ PðS; zÞ ¼ NðSÞI0
Sðzþ 1Þ

2

� �

exp
Sðz� 1Þ

2

� �

;

ð5:3:25Þ
with z ¼ h � g0 � y.

Since the reduced pole figure is the measured one (Section

5.3.2.3.1), it must be computed as (using equation 5.3.5),

�PðS; zÞ ¼ PðS; zÞ � PðS;�zÞ
2

: ð5:3:26Þ

Similarly, for a Lorentzian spherical component

f ðg0; b; gÞ ¼ f ðt; ~!Þ ¼ ð1� t2Þ ð1þ t2Þ2 þ 4t2 cos2ð ~!=2Þ
½ð1þ t2Þ2 � 4t2 cos2ð ~!=2Þ�2 ;

ð5:3:27Þ
where

t ¼ �1=2 � ð� � 1Þ1=2;
c ¼ cos2ðb=4Þ;
w ¼ ð19c2 � 34cþ 19Þ1=2;

� ¼ 2w

3
cos

1

3
cos�1

�82c3 þ 240c2 � 246cþ 80

w3

� �� �

þ 5� 4c

3
;

and the unreduced pole-figure value becomes

Phðg0; b; yÞ ¼ Pðt; zÞ ¼ 1� t4

ð1� 2t2zþ t4Þ3=2 : ð5:3:28Þ

A Gaussian-like fibre component is defined by two vectors

(h0, n0) and the half-width b. n0 is the fibre direction in the sample

coordinates and h0 is the fibre direction in the crystal coordinate

system. Then,

f ðh0; n0; b; gÞ ¼ f ðS; zÞ ¼ S

sinhðSÞ
� �

expðSzÞ; ð5:3:29Þ

in which z and S have been already defined for the Gaussian

component. The unreduced pole figures can now be computed as

PðS; z1; z2Þ ¼
S

sinhðSÞ I0 Sð1� z21Þ1=2ð1� z22Þ1=2
� �

expðSz1z2Þ;
ð5:3:30Þ

where

z1 ¼ h � h0; z2 ¼ y � n0:
In the case of a Lorentzian fibre component, using the same

definitions as for the Gaussian fibre component the equations are

f ðh0; n0; b; gÞ ¼ f ðtf ; zÞ ¼
1� tf

ð1� 2tf zþ t2f Þ3=2
; ð5:3:31Þ

where

tf ¼ R� ðR2 � 1Þ1=2;

R ¼ 22=3 � cosðb=4Þ
22=3 � 1

and the reduced pole figure is

Pðtf ; z1; z2Þ ¼
2

�

1� t2f

ðC �DÞðC þDÞ1=2 E
2D

C þD

� �

;

C ¼ 1þ t2f � 2tf z1z2;

D ¼ 2tf ð1� z21Þ1=2ð1� z22Þ1=2

and E(k) is the complete elliptic integral of the second kind,

EðkÞ ¼ R�=2

0

ð1� k2 sin2 �Þ1=2 d�:

5.3.2.3.8. Positivity and exponential harmonics

In the positivity and exponential method the idea is to use

and determine the odd coefficients that may ensure a positive

f(g). In the positivity method the even coefficients are not

modified (as they are linked to the experimental pole figures) and

the odd coefficients do not affect the computation. For a detailed

description of the positivity algorithm, we refer to the original

articles (Dahms & Bunge, 1988; Van Houtte, 1991). The goal of

the algorithm is to determine the odd coefficients corresponding

to an OD equal to (with sign inverted) the negative part of the

OD found from the experimental data, f0(g),

Cmn
� ¼ �ð2�þ 1Þ R

8g2Z�
f0ðgÞTmn

� ðgÞ dg; ð5:3:32Þ

where Z� is the orientation space over which the f0(g) values are

negative or lower than a given threshold � defining the OD

background. Moreover, it has been recognized that most of the

time there are a set of odd coefficients that are able to completely

eliminate all negative parts of the OD, maintaining the even

coefficients constant. Another way to ensure OD positivity (Van
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Houtte, 1991) is to express it with functions that result in values

that are always positive, such as exponentials with real function

arguments h(g). For instance, using f(g) = exp[h(g)] � 0, (5.3.13)

and (5.3.14) become

exp½hðgÞ� ¼ P
L

�¼0

PMð�Þ

m¼1

PNð�Þ

n¼1
Cmn
� Tmn

� ðgÞ

Cmn
� ¼ ð2�þ 1Þ R exp½hðgÞ�Tmn

� ðgÞ dg: ð5:3:33Þ
The first OD approximation is now obtained by the positivity

method described above (or the GHOST version as described in

Van Houtte, 1983). Calling this latter f0(g), the first approxima-

tion for h0(g) is imposed as

h0ðgÞ ¼ ln½f0ðgÞ� if f0ðgÞ > �,
f0ðgÞ � �þ ln � if f0ðgÞ � �.

�

An iterative refinement is carried out using

hkþ1ðgÞ ¼ hkðgÞ þ
PL

�¼0

PMð�Þ

m¼1

PNð�Þ

n¼1
exp½�hkðgÞ�ðCmn

� � Cmn
�;kÞTmn

� ðgÞ:

Cmn
� are the initial coefficients obtained by the positivity or

GHOST method and the Cmn
�;k before each iteration are computed

using (5.3.14b) and the hk(g) values of the OD. A normalization

of hk(g) is performed at each step. At the end the always-positive

OD is computed as f(g) = exp[hk(g)].

5.3.2.3.9. Radon transform and Fourier analysis

The fundamental equation of QTA (5.3.11) can be recognized

as the Radon transform (Radon, 1986) of f(g) as proposed by

Schaeben & van den Boogaart (2003),

Rf ðh; yÞ ¼ 1

2�

Z

~’ðh;yÞ

f ðgÞ d ~’: ð5:3:34Þ

The integration path ~’(h, y) takes all of the equivalents of h

into account, i.e. all of the rotations that represent the h multi-

plicity (such that gh = y). Because the Radon and the Fourier

transforms are closely related, computationally efficient inver-

sion formulas are available and f(g) can be retrieved by fast

Fourier inversion techniques. The biggest advantage is then that,

unlike generalized spherical harmonics, both odd and even

coefficients can be accessed from the inversion of the Radon

transform.

5.3.2.4. Inverse pole figures

In a pole figure Ph(y) (5.3.11), all of the given h directions from

all of the diffracting crystals are located using the y coordinates

relative to KA, the sample reference frame. In this way, one looks

at only one of the equivalent h directions, and y varies in the pole

figure. In some cases such as axially symmetric textures or when

only some macroscopic directions y are of importance, it can be

useful to represent which of the h directions align with the given

y. For instance, one can aim to see which crystal directions are

aligned with a uniaxial pressure axis (r). This time y is fixed (r, or

ZA if the pressure is applied along ZA) and h varies, and an easy

way to represent such a distribution of h directions versus y is an

inverse pole figure, or Ry(h). Similarly to (5.3.9), one can calcu-

late every inverse pole figure Ry(h) from f(g),

RyðhÞ ¼
1

2�

Z

ykh

f ðgÞ d ’	; ð5:3:35Þ

in which ’
	
is an orientation path in f(g) which takes account of

the crystal symmetry. Inverse pole figures are represented in the

crystal reference frame KB (Fig. 5.3.6). Different sectors are

equivalent by symmetry, from one for triclinic crystal symmetry

to 24 for cubic symmetry. Only one sector is necessary to portray

the unique information, and inverse pole figures are generally

represented in the sector frame.

Similar to pole figures, inverse pole figures exhibit pole-density

distributions. For instance, the inverse pole figure for the drawing

axis of an aluminium wire shows that the h111i and h001i direc-
tions are the main alignment components, with a major h111i

Figure 5.3.6
The inverse pole-figure sectors as a function of the crystal symmetry. The
nonredundant sectors are indicated by bold edges. (a) Triclinic, (b)
monoclinic (the b-axis unique setting has been used), (c) orthorhombic,
(d) tetragonal, (e) rhombohedral using a hexagonal unit cell, ( f )
hexagonal and (g) cubic crystal systems. (h) An inverse pole figure for
the drawing axis of an aluminium wire elaborated by cold drawing (linear
density scale, cubic sector, equal-area projection).
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component, resulting from the gliding systems activated in the

crystals (Fig. 5.3.6h).

5.3.2.5. OD refinement reliability estimators

As in Rietveld analysis, several factors are used to evaluate the

reliability of the solution for f(g). In most programs the RPx

factors are used,

RPx ¼
1

I

X

i

X

j

Pc
hi
ðyjÞ � Po

hii
ðyjÞ

	
	
	

	
	
	

Po
hi
ðyjÞ

; ð5:3:36Þ

where hi, i = 1, . . . , I, are the measured pole figures, yj, j = 1, . . . ,
J, are the measured points of the pole figures, a superscript ‘o’

indicates observed normalized values and a superscript ‘c’ indi-

cates recalculated normalized values, Phi
ðyjÞ is the pole density at

yj on pole figure hi, and x = 0, ", 1, 10, . . . is the criterion to

estimate the accuracy versus the density level.

The value x is a criterion that is used to indicate the quality of

the refinement for the low- and high-density levels. We use x =

0.05 to reveal the global quality and x = 1 to show this quality for

density values higher than 1 m.r.d. However, RP factors depend

on the texture strength since they are not weighted by the density

level, and consequently make the comparison of refinement

quality between samples ambiguous (Chateigner, 2005). In other

words, one should compare the refinement quality with RP

factors only for similar texture strengths and types. Working out

reliability factors on individual pole figures helps to detect

whether some pole figures are particularly badly reproduced

after the refinement, in order to devise a correction strategy.

In order to avoid texture-strength dependence of the reliability

factors, surface-weighted factors (Matthies et al., 1987) and

several arithmetic mean averaging schemes have been described

(Chateigner, 2005). Bragg-like factors also can be calculated,

either weighted by density levels or not (Chateigner, 2005).

However, using full patterns, Rietveld-like analysis provides

‘intensity-weighted’ factors, which exhibit less overall variation

with texture strength and are better indicators for comparing OD

refinement quality among samples,

Rwz
x ¼

PI
i¼1
PJ

j¼1 wo
ijI

o
hi
ðyjÞ � wc

ijI
c
hi
ðyjÞ

� �2

PI
i¼1
PJ

j¼1 wz
ijI

z
hi

h i2
ðyjÞ

�½x;Po
hi
ðyjÞ�; ð5:3:37Þ

where

Izhi ðyjÞ ¼ Po
hi
ðyjÞNhi

is the diffracted intensity, Nhi
is the refined normalizing factor,

wz
ij ¼

1

½Izhi ðyjÞ�1=2

is the diffracted intensity weight and

�ðx; tÞ ¼ 1 for Phi
ðyjÞ > x;

0 for Phi
ðyjÞ � x:

�

Whatever the reliability factors, one of the best estimates of a

physically reasonable solution remains visual (Fig. 5.3.7). If the

OD has been satisfactorily refined, any pole figure recalculated

from this OD should compare well with the experimental pole

figure.

Figure 5.3.7
Visual examination of the OD refinement reliability using experimental and recalculated normalized {104}, {110}, {113}, {202}, {116}, {211}, {125} and
{300} pole figures (in successive order). WIMV refinements are from BEARTEX. Linear density scale, equal angular projections. The sample is the
calcite outer prismatic layer of the deep-ocean mussel Bathymodiolus thermophilus, maximum density 6.3 m.r.d., minimum density 0 m.r.d. Here,
RP0.05 = 25% and RP1 = 17%.
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5.3.2.6. Texture-strength factors

Once f(g) has been satisfactorily obtained, some factors can

give an estimate of the overall texture strength. These factors are

used to compare samples with the same crystal symmetries and

similar texture components.

5.3.2.6.1. Texture index

5.3.2.6.1.1. OD texture index

The first overall texture-strength parameter is the so-called

‘texture index’ (Bunge, 1982; expressed in units of m.r.d.2),

F2 ¼ 1

8�2

X

i

½ðgiÞ�2�gi; ð5:3:38Þ

where �gi is the OD cell volume. This index varies from 1

(random powder) to infinity (perfect texture or single crystal). It

represents the mean-square value of the OD. Using harmonics,

this factor is calculated from the Cmn
� coefficients:

F2 ¼ 1þ
XL

�¼2

1

2�þ 1

� � X�

m¼��

X�

n¼��
jCmn

� j2: ð5:3:39Þ

5.3.2.6.1.2. Pole-figure texture index

To compare the texture strengths of different samples, the

texture index associated with given pole figures may be used,

J2h ¼
1

4

X

i

½PhðyiÞ�2�yi; ð5:3:40Þ

with �y = sin#y�#y�’y.

5.3.2.6.2. Texture entropy

The second overall texture strength parameter is a measure of

the texture disorder, evaluated by the calculation of the entropy

(Shannon, 1948),

S ¼ � 1

8�2

X

i

f ðgiÞ ln f ðgiÞ�gi: ð5:3:41Þ

5.3.2.6.3. Pole-figure and ODF strengths

Both OD and pole-figure indexes are expressed in units that

are not homogeneous with distribution density units (m.r.d.). To

help with comparison and interpretation, it is more convenient to

compare the square roots of these values, i.e. the OD and pole-

figure strengths, respectively (Kocks et al., 1998),

F ¼ ðF2Þ1=2 and Jh ¼ ðJ2hÞ1=2: ð5:3:42Þ
The texture entropy can also serve as another texture-strength

definition, called FS:

FS ¼ ½expð�SÞ�1=2: ð5:3:43Þ

5.3.2.6.4. Correlation between F2 and S

From the definitions of F 2 and S, their variations are restricted

to the (1, 1) and (0, �1) domains, respectively. Entropy and

texture index are correlated, but it is not possible to obtain a

general analytical expression for this correlation, which depends

on f(g). To appreciate it, one can represent f(g) functions as

points in the (F2, S) plane. In this plane there is a lower bound for

f(g), which can be visualized by the f(g) functions of strongly

textured samples with no random component (Fig. 5.3.8). This

lower bound for the H space (Hielscher et al., 2007) is defined by

S ¼ � lnF2: ð5:3:44Þ
No f(g) function can be located below this bound, but a priori

all of the space between it and the S = 0 axis of this graph

corresponds to possible f(g) functions. For instance, an OD

composed of two components, one very sharp and corresponding

to part of the sample volume and the other random and corre-

sponding to the remaining volume fraction, would be positioned

at the point (300, �0.5). On the S = 0 axis only the point (1, 0)

corresponds to a valid point for f(g), since if S = 0 then F2 is

automatically 1 m.r.d.2.

5.3.2.7. Texture types

5.3.2.7.1. Random texture

A random texture (or random sample) belongs to the11/m

Curie (limit) group and is simply a name given to the texture

exhibited by a sample that has no preferred orientation. Its

crystallites are randomly oriented. The same number of grains

are diffracting at any y, and the orientation density for any point y

in a given h pole figure is the same. Consequently, all crystalline

{hkl} planes are randomly oriented, and Ph(y) = 1 m.r.d. for any h

and y, i.e. all pole figures exhibit homogeneous 1 m.r.d. densities.

In such a texture, each crystallite has three degrees of freedom

(rotations around three orthogonal axes) to orient KB relative to

KA. Consequently, all of the OD values correspond to f(g) =

1 m.r.d. distribution densities, whatever the value of g.

However, in some samples only a fraction of the total volume,

Vr, is randomly oriented; the rest, Vc(g), is the oriented fraction

volume with orientation component or components fc(g). The

random part produces a background level in the OD, sometimes

called ‘fon’ or ‘phon’, and one can decompose the OD as

f ðgÞ ¼ fr þ fcðgÞ; ð5:3:45Þ
with the mandatory conditions 0 � fr � 1 and fr = min[f(g)].

By integrating (5.3.1) and taking into account (5.3.35), one

obtains

Vr þ VcðgÞ
V

1

8�2

I
½fr þ fcðgÞ� dg;

which verifies that

Figure 5.3.8
Entropy variation with texture index for modelled f (g) functions.
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Vr=V ¼ fr for the random part; and

dVcðgÞ
V
¼ 1

8�2
fcðgÞ dg for the textured part:

ð5:3:46Þ

This strictly means that the minimum value

of the OD (e.g. fr = 0.3 m.r.d.) defines the

random volume fraction, i.e. 30% of the

material is randomly oriented in this case.

5.3.2.7.2. Planar textures

This kind of texture is exhibited by samples

in which the crystallites have two degrees of

freedom to orient and belong to the 11
Curie group. One specific hhkli* direction

family is allowed to rotate around one sample

axis. The hhkli* directions are then located at

random in a KA plane perpendicular to the

rotation axis. For instance, if the rotation axis

is XA with the direction family h100i* of an

orthorhombic crystal system (Fig. 5.3.9), the

the h100i* directions are then distributed in

the (YA, ZA) plane. However, since the other

directions are at random around h100i*, their
pole figures remain quite homogeneous.

Of course, it is a special case that the

rotation axis is along a major axis of the

sample, and that the h100i* (a axes) are the

directions concerned. There could have been

an inclined axis of rotation and reflections

with a larger multiplicity, giving rise to more

complex pole figures. Planar textures with the

rotation axis around ZA are called a ‘cyclic-

planar’ texture (Fig. 5.3.10).

5.3.2.7.3. Fibre textures

If the crystallites lose another degree of

freedom in their orientation (1, 1m, 1/m,

12 or1/mm Curie groups), they are forced

to align one of their hhkli* directions with one
direction y of KA, with all other directions

being at random around hhkli*. Such a

texture is called ‘fibre texture’. For instance, if

all of the h001i* directions from an ortho-

rhombic crystal system are located along y =

(#y = 45�, ’y = 45�) (Fig. 5.3.11), then the

h100i* and h110i* directions will be located at

random in a plane perpendicular to this y. As

above, if the h001i* directions are aligned

with ZA then the texture is called a ‘cyclic-

fibre texture’ (Fig. 5.3.12). Such a texture has

the h100i* and h110i* poles located on the

periphery of the pole figures.

5.3.2.7.4. Three-dimensional textures

Samples composed of crystallites which

have had no opportunity to orient themselves

in KA (zero degrees of freedom) will exhibit

point poles for all of their pole figures. The

pole figures will be similar to those of a single

crystal. We call this a ‘three-dimensional’ or

‘single-crystal-like’ texture. For instance if the

Figure 5.3.9
{100}, {001} and {110} pole figures of a planar texture in an orthorhombic crystal system. The
rotation axis of the planar texture is with h100i* directions perpendicular to XA.

Figure 5.3.10
{100}, {001} and {110} pole figures of a cyclic-planar texture in an orthorhombic crystal system.
The rotation axis of the cyclic-planar texture is with h100i* directions perpendicular to ZA.

Figure 5.3.11
{100}, {001} and {110} pole figures of a fibre texture in an orthorhombic crystal system. The
fibre axis is with h001i* directions at (#y = 45�, ’y = 45�).

Figure 5.3.12
{100}, {001} and {110} pole figures of a cyclic-fibre texture in an orthorhombic crystal system.
The fibre axis is with h001i* directions along ZA.

Figure 5.3.13
{100}, {001} and {110} pole figures of a three-dimensional texture in an orthorhombic crystal
system, with h001i* directions along ZA and h100i* directions along XA.
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h001i* directions are aligned with ZA and the h100i* directions

withXA, the pole figures will look like those in Fig. 5.3.13, and the

’y angles to which the h110i* poles are localized will depend on

the b/a ratio of the orthorhombic structure.

One should avoid confusion between real single crystals and

polycrystals exhibiting three-dimensional textures (Fig. 5.3.14). A

single crystal, as usually understood in single-crystal crystal-

lography, exhibits a ‘mosaicity’, itself composed of a mosaic

spread and size. The mosaic spread is often measured using a so-

called ‘rocking curve’, i.e. a limited view of the complete texture,

and in this sense is a ‘three-dimensional texture’ with very small

crystallite misorientation. The mosaic size represents the

coherent domains (crystallites) of the mosaic in the single crystal.

A perfect three-dimensional texture can correspond either to an

ensemble of coherent domains with respective crystal reference

frames perfectly parallel to one another (i.e. with no spread) but

with no wave coherence between them, or to a large single crystal

that diffracts as a single coherent domain. The diffracted intensity

is much larger in the latter case and the direct pole figures will

show very large intensities compared with the former. However,

the normalized pole figures will be the same in both cases, as all

effects other than crystal orientation are eliminated by normal-

ization.

5.3.2.7.5. Typical OD components

Each of the previous texture types has corresponding OD

descriptions as components of orientations, which can be repre-

sented, for example, using a Cartesian coordinate system for H

space (Fig. 5.3.15) and isodensity surfaces for simplicity. An

individual point g in this space represents an individual orienta-

tion located at {�c, �c, �c}. A spherical component (b in Fig.

5.3.15) consists of concentric spheres with increasing radii for

lower densities, with the level of these latter depending on the

choice of the function representing the component. An elliptical

component (c) shows an elongation in one or two directions (here

along the �c rotation axis). A tube around a given (�c, �c) couple
that is elongated over the whole �c range represents a fibre

texture with a fibre axis that is inclined with respect to the main

KA axis (a in Fig. 5.3.15). Isolated components respecting specific

relationships between their coordinates can also exist; for

instance, a tube around �c = 0 with �c + �c = constant (d in Fig.

5.3.15) or �2c + �
2
c = constant (e in Fig. 5.3.15).

For cyclic-fibre components �c = 0 and �c is distributed on 2�.
In this configuration, a �c rotation or an �c rotation have the same

effect and the whole (�c, �c) plane is filled by density (Fig.

5.3.16a). In a cyclic-planar texture (Fig. 5.3.16b), on the contrary,

�c = 90�. However, in this case both �c and �c are distributed on

2�, since the cyclic-planar axis ZB is distributed in the (XA, YA)

plane and since all directions are at random ZB. The result is an

ODF representation that looks very similar to that of a cyclic-

fibre texture, except for the coordinate of the high density levels

along the �c axis of rotation.

5.3.2.8. Reciprocal-space mapping

Reciprocal-space mapping (RSM) represents the localization

of the momentum transfer in the sample reference frame (KA).

The momentum-transfer vector q is defined by

q ¼ ðko � kiÞ;
kqk ¼ 4�

�
sin � ¼ 2kkk; ð5:3:47Þ

in which ki and ko are the incident and outgoing wavevectors,

respectively. The goal of RSM is then to locate a reciprocal

vector, defined in reciprocal spaceR, in a reference frame defined

in the sample direct space. Since q is perpendicular to the

diffracting plane (hkl), it is also parallel to the normal h of this

latter. Consequently, RSM first determines the ensemble of Ih(y)

diffracted intensities for the y orientations of a given reciprocal

node corresponding to the extension of the Bragg peak h on the

pole sphere. At this point one should notice that RSM is gener-

ally performed on strongly oriented samples such as epitaxial

layers or single crystals. Each y set of measured orientations is

then restricted in sample space on the pole sphere for a given h.

However, this does not avoid the measurement of a large number

Figure 5.3.14
The difference between a perfect single crystal and a polycrystal with
perfect three-dimensional crystallite orientations. The normalized pole
figures should be identical.

Figure 5.3.15
Isodensity surfaces representing isolated OD components in a Cartesian
coordinate system in H space.

Figure 5.3.16
Several isodensity surfaces representing a cyclic-fibre OD (a) and a
cyclic-planar OD (b) in H space.
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of points for each h to correctly describe the reciprocal-space

node.

Secondly, one has to transform measured y directions of Y

space to their corresponding values in R by multiplying them by

the norm ||q|| of the q vector. This results in a set of Ih(q) values

represented in KA.

From the pole-figure definitions, the q coordinates are

qXA
¼ 4�

�
sin � sin#y cos ’y

qYA
¼ 4�

�
sin � sin#y sin ’y

qZA
¼ 4�

�
sin � cos#y: ð5:3:48Þ

5.3.3. Magnetic quantitative texture analysis (MQTA)

5.3.3.1. Magnetization curves and magnetic moment distributions

The measurement of magnetic pole figures using neutron

diffraction is sparsely documented and only a few attempts at

refining magnetic ODs have been carried out to date (Birsan et

al., 1996), although knowledge of the anisotropic distribution of

magnetic moments in a sample has been shown to be of crucial

importance to predict macroscopic magnetic behaviours

(Morales et al., 2003). Anisotropic magnetic behaviour is usually

probed using magnetization curves measured in only two

perpendicular macroscopic directions of the sample, and is then

intrinsically subjected to strong biases if the sample magnetic

moment distribution does not respect some symmetry, adapted to

the magnetization measurement (Fig. 5.3.17). Magnetic moment

distribution characterization is thus a prerequisite for checking

the validity of magnetization measurements for a given sample-

measurement configuration.

Neutron diffraction is perfectly suited for the examination of

macroscopic magnetic moment distributions, provided that one

can measure the same sample with and without the application of

an external magnetic field during the measurements (Chateigner

et al., 2010).

5.3.3.2. Magnetic pole figures and magnetic ODs

5.3.3.2.1. Magnetic pole figures and ODs

Using neutron diffraction, pole figures are composed of a

nuclear (n; the usual crystallographic pole figures) and a magnetic

(m) part in zero field or under the application of an external

magnetic field B,

IhðyÞ ¼ Inh ðyÞ þ Imh ðyÞ;
Ihðy;BÞ ¼ Inh ðy;BÞ þ Imh ðy;BÞ: ð5:3:49Þ

For crystallites that are not free to rotate under B, for example in

the solid state without phase transformation,

Inh ðy;BÞ ¼ Inh ðyÞ; hence

Ihðy;BÞ ¼ Inh ðyÞ þ Imh ðy;BÞ: ð5:3:50Þ

This latter equation is of interest because it can serve for the

determination of the magnetic part from an independent deter-

mination of the nuclear part, for example using X-ray diffraction.

The application of a field B eventually induces a reorientation of

magnetic moments in the sample, or magnetic polarization, which

is seen using neutron diffraction as variations of intensities,

�Imh ðy;BÞ, in the pole figures, and (5.3.49) becomes

Ihðy;BÞ ¼ Inh ðy;BÞ þ Imh ðy; 0Þ þ�Imh ðy;BÞ: ð5:3:51Þ

As for crystallographic QTA, total magnetic scattering

normalized pole figures [Pm
h ðy;BÞ], normalized magnetic scat-

tering polarization pole figures [�Pm
h ðy;BÞ] and their respective

magnetic ODs [fm(g, B) and f pmðg;BÞ] have to respect normal-

ization with their respective normalization factors (random

intensities),

R

y

Pm
h ðy;BÞ dy ¼ 2�;

R

y

�Pm
h ðy;BÞ dy ¼ 0;

In;rh ¼
R
y I

n
h ðy;BÞ dyR

y dy
;

Im;rh ¼
R
y I

m
h ðy;BÞ dyR

y dy
¼ Im;rh ðy; 0Þ ¼ Im;rh ðy;BÞ;

R

g

fmðgÞ dg ¼ 4�2;

R

g

f pmðgÞ dg ¼ 0: ð5:3:52Þ

5.3.3.2.2. Fundamental equations of MQTA

Since two different magnetic scattering pole figures and ODs

have been constructed, there are two corresponding fundamental

equations:

Pm
h ðy;BÞ ¼

1

2�

Z

hky

fmðg;BÞ d ~’ ð5:3:53Þ

for the total magnetic scattering, with ~’ in general different from

that of the crystallographic (nuclear) part since magnetic and

nuclear cells can have different rotation groups, and

�Pm
h ðy;BÞ ¼

1

2�

Z

hky

f pmðg;BÞ d ~’ ð5:3:54Þ

for the polarization part. Because the normalization of the

polarization part requires us to work in the ‘positive’ and

‘negative’ spaces of the polarization pole figures, this latter

equation is in fact composed of two parts:

Figure 5.3.17
Illustration of a case for which a magnetization measurement in two
perpendicular directions cannot reveal the macroscopic magnetic
anisotropy. (a) Virtual distribution of the magnetic moments, with
magnetic moments at 45� from both magnetization measurement
directions, and (b) the corresponding magnetization curves.
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�Pmþ
h ðy;BÞ ¼

1

2�

Z

hky

f pþm ðg;BÞ d ~’;

�Pm�
h ðy;BÞ ¼

1

2�

Z

hky

f p�m ðg;BÞ d ~’: ð5:3:55Þ

The correct normalizations and determinations of the various

orientation quantities accessible to neutron diffraction depend on

many factors. The possibilities of observing neutron peaks

without magnetic contributions and the initial magnetic and

crystallographic orientation states of the sample (isotropic or

anisotropic) have been discussed elsewhere (Chateigner et al.,

2010).

5.3.3.3. An example

Here, we illustrate magnetic quantitative texture analysis on an

iron sample exhibiting magnetic saturation around 0.5 T

(Chateigner et al., 2010) that was initially not magnetized.

Measurements were carried out on the D19 beamline at ILL first

without and then with an applied magnetic field of 0.3 T, which is

Figure 5.3.18
{110} pole figures at zero field (a), under 0.3 T (b) and the difference (c). (d) Fit of the sum of all diagrams at zero field using the orthorhombic magnetic
subgroup in FullProf; (e) WIMV recalculated/normalized nuclear {110} pole figure. ( f ) Inverse nuclear pole figure for the cylinder sample-axis
direction and (g) WIMV recalculated/normalized magnetic scattering contribution for the main orthorhombic axes. (h–j) Recalculated/normalized
magnetic scattering polarization pole figures for the positive (h) and negative (i) parts of the difference pole figures, and the corresponding positive
{001} magnetic scattering pole figure illustrating the magnetic moment reorientation (j).
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sufficient to partly reorient the magnetic moments. At zero field

(Fig. 5.3.18a) the sample exhibits a strong signal with a moderate

h110i crystallographic texture. Under a 0.3 T field (Fig. 5.3.18b),

the maximum of the {110} experimental pole figure decreases

significantly at the benefit of the pole-figure equator. This is

coherent with a magnetic field applied along the sample cylinder

axis (ZA), with which magnetic moments tend to align, giving rise

to more magnetic diffraction signal 90� to it. The difference {110}

pole figure illustrates this more explicitly (Fig. 5.3.18c), with

negative differences at its centre and positive values on its

equator. We then calculated the random magnetic contribution of

the isotropic magnetic sample using FullProf (Fig. 5.3.18d), using

the sum of all diagrams measured at all of the sample orienta-

tions, taking into account the resolution characteristics of the D19

instrument. This random magnetic contribution provides the

possibility of decoupling nuclear and magnetic contributions at

zero field: Inh ðy; 0Þ and Imh ðy; 0Þ, respectively (Chateigner et al.,

2010). These latter pole figures were used to refine the corre-

sponding ODs, fn(g) and fm(g), using the body-centred cubic

crystal symmetry and the orthorhombic magnetic symmetries,

respectively, and the WIMV algorithm in BEARTEX (Wenk et

al., 1998). The nuclear h110i fibre texture (Fig. 5.3.18e) culminates

at 1.32 m.r.d. [fmax
n ðgÞ = 1.8 m.r.d., fmin

n ðgÞ = 0.61 m.r.d., F2 =

1.03 m.r.d.2, RP0 = 1.42%], and the fibre axis is aligned with ZA as

the sole textured component (Fig. 5.3.18f). Since the easy-axis

direction for magnetization in iron is h100i, the actual h110i fibre
does not correspond to an easy-magnetization configuration.

Consequently, the total normalized magnetic scattering pole

figures of the main magnetic unit-cell axes (Fig. 5.3.18g) do not

show a strong reorientation of densities, and exhibit a maximum

of only 1.32 m.r.d. on the pole figures, but a larger OD maximum

value [fmax
n ðgÞ = 2.3 m.r.d., fmin

n ðgÞ = 0.64 m.r.d., F2 = 1.03 m.r.d.2,

RP0 = 0.24%].

From the magnetic scattering polarization pole figures we

refined the magnetic polarization OD, f pþm ðgÞ and f p�m ðgÞ. Since
the magnetic scattering difference pole figures show positive and

negative values, we divided them into positive and negative

zones, �Imþh ðy;BÞ and �Im�h ðy;BÞ, respectively, assigning zeros

to the negative cells of �Imþh ðy;BÞ and vice versa. From

�Imþh ðy;BÞ and j�Im�h ðy;BÞj we refined the magnetic scattering

polarization ODs, f pþm ðgÞ [f pþ;max
m ðgÞ = 93 m.r.d., f pþ;min

m ðgÞ =
0 m.r.d., F 2 = 12.4 m.r.d.2, RP0 = 6.83%] and f p�m ðgÞ [f p�;max

m ðgÞ =
6.1 m.r.d., f p�;min

m ðgÞ = 0.04 m.r.d., F 2 = 2.70 m.r.d.2, RP0 = 0.00%]

in BEARTEX, which yielded the normalized �Pmþ
110 ðy;BÞ and

j�Pm�
110 ðy;BÞj pole figures (Figs. 5.3.18h and 5.3.18i, respectively).

These latter clearly show the reoriented part of the magnetic

signal, with a large density created in the centre of j�Pm�
110 ðy;BÞj,

indicating a departure of intensities in this area to reach

the periphery of �Pmþ
110 ðy;BÞ, both pointing towards magnetic

moment alignment with ZA. The maximum densities observed

in these latter pole figures measure the strength of the

intensity reorientations, as also seen from the texture indexes

and OD maxima. Most importantly, since the diffracted signal

reveals magnetic moments that are located 90� to it, one can

search in this case for a reflection at this angle from [110],

which is, for instance, 001 in this space group. The �Pmþ
110 ðy;BÞ

(Fig. 5.3.18j) then directly reveals the distribution of reoriented

magnetic moments, which in this case indicates a 9.4 m.r.d.

density of reorientation. Interestingly, in this case one can see

a slight but significant deviation of these magnetic moments

with respect to ZA (h110i crystallographic fibre axis), probably

owing to difficulty in controlling the application of the magnetic

field.

5.3.4. Modelling of preferred orientation in the Rietveld method

The modelling of preferred orientation in diffraction patterns was

originally developed to facilitate structure determination. The

presence of an unrecognized preferred orientation can be fatal

to structure solution. Texture is particularly present in easily

cleaved materials or materials with anisotropic habits, and when

the samples are prepared by anisotropic techniques. X-ray

diffraction specimen preparation often introduces preferred

orientations, which have been mostly considered as an undesir-

able phenomenon in Rietveld analysis.

When textures have not been removed successfully by careful

grinding and packing, the remaining texture has to be modelled

during the analysis. There are two types of texture treatments in

Rietveld analysis. If the texture is simple (smooth, fibre type and

not too severe), it can be modelled using analytical formulae. If it

is more complex (several texture components, sharp pole figures)

the treatment requires a quantitative texture analysis (the subject

of Section 5.3.2). In this section the simplest texture corrections

are described, but the best way to characterize texture effects is

to carry out QTA inside the Rietveld approach. The texture is

roughly modelled using three parameters:

(i) a texture axis linked to the sample symmetry (the normal to

the sample surface for a flat sample in Bragg–Brentano

geometry or the cylinder axis in Debye–Scherrer geometry),

(ii) the crystallographic direction h, which tends to align with the

previous axis, and

(iii) a texture strength (angular dispersion, texture factor etc.).

5.3.4.1. Rietveld and March approaches

The preferred orientations are modelled in the original equa-

tion of Rietveld by the March function (March, 1932) using the

function Ph,

Ph ¼ expð�G1�
2
hÞ ð5:3:56Þ

or

Ph ¼ G2 þ ð1�G1Þ expð�G1�
2
hÞ; ð5:3:57Þ

where G1 and G2 are refinable parameters and �h is the angle

between the texture direction h and the scattering vector.

5.3.4.2. March–Dollase approach

Dollase proposed an improvement to the March approach

using the following function (Dollase, 1986):

Ph ¼ G2
1 cos

2 �h þ
1

G1

� �

sin2 �h

� ��3=2
: ð5:3:58Þ

Originally, the March correction assumed a Gaussian distri-

bution of the preferred-orientation axis of the individual crys-

tallites about an axis. G1 is a refinable parameter that now

controls the distribution shape and is an index of the preferred-

orientation strength (0 < G1 � 1; G1 = 1 for a random orienta-

tion).

This model provides

(i) a preferred-orientation model with minimum or maximum at

�h = 0�,
(ii) a symmetric and smooth evolution in the (0, 90�) �h range,
(iii) a single parameter to be fitted, and
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(iv) the possibility of normalization of the orientation,

R�=2

0

Ph sin �h d�h ¼ 1: ð5:3:59Þ

This latter property is important in order to keep the total

diffracted intensity in a diffraction diagram constant whatever

the distribution shape Ph. A point that is often not realized is

that the March–Dollase approach assumes cylindrical sample

symmetry.

5.3.4.3. Modified March–Dollase models

More recently, Brosnan et al. (2006) proposed a modification of

the March–Dollase approach by including a ‘random’ orientation

factor,

Ph ¼ f G2
1 cos

2 �h þ
1

G1

� �

sin2 �h

� ��3=2( )

þ ð1� f Þ: ð5:3:60Þ

In this model, it is expected that the factor f provides the

random part, i.e. the volume of randomly oriented crystallites.

However, it must be noted that this factor is linked to the

component of orientation that is described by the formula. Since

this only describes one orientation component, i.e. a specific h

distributed in a given distribution around the normal to the

sample, f is in fact only the volume fraction of crystallites that

have their h direction in this distribution component, with (1� f)

being the volume fraction of crystallites that are not in this

component (oriented differently) but are not necessarily

randomly oriented. Let us give an example to illustrate this point:

imagine a sample containing tetragonal crystallites with a single

orientation component, for example with their c axes distributed

in a Gaussian around the normal. In this case, if f = 0.5, 50%

of the crystallites have [001] directions inside the Gaussian

component. However, there is no information, for instance, about

the orientation of the a axes around the orientation component.

Thus, (1 � f) does not mean that 50% of the crystallites are

necessarily randomly oriented; the a axes may possibly be

strongly oriented along one specific direction in the plane

perpendicular to the c axes. The parameter f hence does not

represent the orientation distribution function f(g), and one

should not confuse them.

A second modification (Zolotoyabko, 2009) focuses on the

estimation of an orientation degree parameter �Z, defined on the

basis of the Dollase parameter G1:

�Z ð%Þ ¼
ð1�G1Þ3
1�G3

1

� �1=2
: ð5:3:61Þ

The �Z parameter tends to zero as G1 values reach 1 and to

100% for G1 = 0. It can easily be introduced in Rietveld

programs and intrinsically contains the normalization condition

of (5.3.59).

5.3.4.4. Donnet–Jouanneaux function

This model for preferred orientation is purely empirical, with a

parameter D controlling the preferred orientation (D = 0 for a

random orientation) (Jouanneaux, 1999):

Ph ¼ 1þ D cos 2�h
1þ ðG� 1Þ sin2 �h

: ð5:3:62Þ

5.3.4.5. Modelling by spherical harmonics (and exponential)

Järvinen and others (Ahtee et al., 1989; Järvinen, 1993) initially

proposed the use of a harmonic method to model preferred

orientation in Rietveld refinement for cylindrical sample

symmetry. The idea was expanded by Popa (1992) to all sample

symmetries and implemented by Von Dreele in GSAS (Larson &

Von Dreele, 2000).

Equation (5.3.13) is utilized to compute the preferred-

orientation effect on intensities as a function of the coefficients.

The sample symmetry must be imposed depending on the kind of

measurement that is performed. In general, with only one pattern

in either Bragg–Brentano or Debye–Scherrer geometry, a

cylindrical symmetry (fibre texture) for the sample should be

used. The fibre axis will be normal to the surface of the sample for

the Bragg–Brentano case and along the capillary axis for the

Debye–Scherrer case. Spinning the sample along this fibre axis

will ensure the correct symmetry for the sample in cases where it

is not correct. When a static specimen with known rolling or shear

texture is measured (preferably in multiple orientations), the

appropriate noncylindrical sample symmetry should be used, and

the angles relating the different orientations must be considered.

Another remark should be made on the use of spherical

harmonics with the Rietveld method. All spherical-harmonics

descriptions and implementations (the same is also true for

discrete methods such as WIMV, EWIMVand ADC) in the case

of monoclinic crystal symmetry work only in the c-axis unique

(Mattheis & Wenk, 2009) setting.

Different approaches have been used to ensure an OD that is

always positive. The approaches used to force a positive OD, such

as those described by Van Houtte (1991), do not have an effect in

this case as the even coefficients are the only ones that are used in

preferred-orientation correction and are not affected by posi-

tivity or similar methods. Constraints to force positive texture-

correction factors are already provided by the experimental

pattern. Additional constraints may be added to force the OD to

also have positive texture factors or to remain inside the

measured bounds.

An alternative approach is to write the OD as f(g) = exp[h(g)]

(in a similar fashion to the exponential-harmonic method of Van

Houtte, 1991) and to expand the function h(g) in terms of

spherical harmonics. This will retain all of the symmetries of the

OD and ensure an OD that is always positive. The problem is that

the texture factors can no longer be calculated using (5.3.13) and

should be evaluated by numerical integration over the OD using

(5.3.11), and in the Rietveld least-squares method only the

numerical derivative must be adopted.

5.3.4.6. The use of standard functions (or texture components)

An alternative model for preferred orientation is to use stan-

dard components. In the case of only one pattern, fibre compo-

nents should be used or fibre sample symmetry as described in

Section 5.3.2.3.7. To compute a pole-figure value or texture model

for a general fibre component having a partial Gaussian and

Lorentzian character, (5.3.29) and (5.3.31) can be used by inte-

grating around the fibre axis.

5.3.4.7. Remarks

In most of the previous models, the formulations are only

valid for axially distributed, single-component textures (with a

cylindrical symmetry around the scattering vector, and for a

Bragg–Brentano symmetric geometry), for which efficient

corrections are obtained (O’Connor et al., 1991; Capková et al.,
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1993; Cerný et al., 1995). They have been implemented in

many Rietveld programs, and some of them allow the modelling

of two or more texture components of this type. For all other

textures, measurements and formalisms to resolve the texture

are required, unless the conversion of the sample to powder

is acceptable. Furthermore, one should take particular care

regarding the geometry used for the measurements. The previous

formulae describe the orientations in the sample reference frame,

while measurements are carried out in the spectrometer frame.

The relationships between the two frames are straightforward

when using classical �–2� scans, but for any other measurements,

such as rocking curves or the use of area detectors, for instance,

prior localization corrections have to be made to locate the plane

normals in the sample frame.

The previous models do not allow the description of

texture either in terms of orientations or of distribution

densities (expressed in m.r.d. units), based on the absence of OD

calculations implying normalization. Also, many Rietveld-based

programs offer preferred-orientation modelling capabilities, but

do not always include OD refinement, i.e. not reaching the QTA

stage (Table 5.3.1).

In particular, working on whole patterns became mandatory

with the growing demand for the characterization of nanocrys-

talline samples. In such samples, the tremendous inter-phase and

intra-phase overlaps prevent any correct QTA characterization

if proper deconvolutions are not carried out. A Rietveld-like

approach becomes mandatory, with the advantage of then being

able to access other material characteristics such as residual

stresses, phase amounts and line broadening. This is the subject of

combined analysis.

5.3.5. Combined analysis: structure, texture, microstructure,
stress, phase, layering and reflectivity analyses in a single

approach

5.3.5.1. Problems

Analysis by the diffraction/scattering of X-rays is presently

facing a major problem: the nondestructive characterization of

samples with increasing complexity (thin or massive hetero-

structures, polyphase materials, hybrids etc.), including as many

as possible of their characteristics (structure, texture, crystallite

sizes). These real samples often exhibit optimized properties

because of their anisotropy, and this creates some problems in

data analysis.

Problem 1. Anisotropic samples exhibit diffraction diagrams

depending on the sample orientation because of the presence of

texture. Refinement of crystal structures requires a model for the

texture, as shown in Section 5.3.4. Texture factors depend on

sample orientation, whereas structure factors do not. Also,

texture factors integrate to unity over the entire pole figure. This

indicates that with a proper approach to the problem (exploiting

the full texture analysis), texture and structure are completely

uncorrelated and can easily be decoupled. Full (and sharp)

texture can actually be used as an advantage in structure solution

(Wessels et al., 1999).

Problem 2. Anisotropy is induced during production (e.g.

heteroepitaxy, uniaxial pressing etc.), along with residual stresses

in the sample. The diffraction peaks are then shifted relative to

their unstressed positions, which biases on the one hand struc-

tural determination (unit-cell parameters) and on the other hand

QTA, since the peak positions vary with the necessary rotations

of the sample for texture measurements. It is then necessary to

analyse the residual stresses in order to determine both the

structure and texture correctly. However, differently oriented

crystallites do not deform identically under the same macroscopic

stress thanks to their tensorial elastic properties (anisotropic if

texture is present), and a mutual influence exists between texture

and residual stresses. Thus, there is a need to analyse both texture

and stress simultaneously to obtain more accurate values of each.

Problem 3. Samples can be composed of several layers of

different phases, which then have to be characterized individually

in terms of structure/texture/stress. Volume and absorption

variations are not the same for a covered layer, a top film or a

substrate, and have an effect on intensities measured at different

2� and y positions. These variations, if unaccounted for, bias

structural, quantitative and textural analyses. The corrections to

be applied depend on the effective thicknesses of the layers and

their absorption coefficients, and thus depend on the phase

composition.

Problem 4. In polyphase materials (completely or partially

crystalline), quantitative phase analysis (QPA) can be biased if

texture is present, and a suitable model is necessary in the

analysis. Simple models such as the March–Dollase model should

be avoided. The texture should be fully accounted for or removed

by suitable sample preparation.

Problem 5. All of these results (structure, QTA, QPA, residual

stress analysis and layering) depend on the microstructural states,

crystallite sizes and shapes (isotropic or anisotropic), crystalline

defects (point, linear, planar or volumetric), composition varia-

tions and microstrains, which in turn will be correctly determined

only if the other parameters are satisfactorily known. Let us take

the example that crystallite size effects are revealed in the line

broadening and are then decoupled from (for instance) texture,

which induces only intensity variations. This working hypothesis

is, however, only valid if no peak overlap occurs. Indeed, if

overlap is present the separation of each individual line broad-

ening will depend on the convoluted intensities, which in turn

depend on the texture (and/or other intensity effects). In a multi-

Table 5.3.1
Preferred-orientation (PO) modelling methods implemented in some Rietveld packages, and their capability to perform a full texture analysis (QTA)
with determination of the OD from several patterns

Details are given in the form yes/no for PO correction/full QTA (OD refinement).

Software GSAS FullProf TOPAS MAUD Jana BGMN RIETAN WinMprof

March–Dollase Yes/no Yes/no Yes/no Yes/no Yes/no Yes/no Yes/no Yes/no
Donnet–Jouanneaux No/no No/no No/no No/no No/no No/no No/no Yes/no
Spherical harmonics Yes/yes No/no Yes/no Yes/yes No/no No/no No/no No/no
Exponential harmonic No/no No/no No/no Yes/yes No/no †/no No/no No/no
WIMV No/no No/no No/no Yes/yes No/no No/no No/no No/no
EWIMV No/no No/no No/no Yes/yes No/no No/no No/no No/no
Standard components No/no No/no No/no Yes/yes No/no No/no No/no No/no

† In this case an exponential-harmonics method is claimed, but the particular implementation does not ensure compatibility between pole-figure and OD values.



572

5. DEFECTS, TEXTURE AND MICROSTRUCTURE

component line, it will become dangerous to separate the

components without somehow constraining the intensities, which

can be performed using both Fh and f(g) information. Conver-

sely, the correct estimation of each intensity for subsequent QTA

requires the separation step, implying some knowledge of the

broadening.

Problem 6. All of the previous determinations rely on an a

priori knowledge of the exact material composition to be char-

acterized. Unfortunately, compositions may vary from sample to

sample, giving rise to incorrect assignments of parameters during

refinement. For instance, we may have the same atoms distrib-

uted over multiple phases in an unknown way, or multiple atoms

occupying the same crystallographic site in one or more phases.

In such a case one needs to constrain the problem, using for

instance elemental compositions from energy-dispersive X-ray

spectroscopy (EDX) or X-ray fluorescence (XRF). Also, for a

quantitative XRF or EDX analysis a precise knowledge of the

phase concentrations is fundamental to estimate the matrix effect

or absorption. Chemical analysis by EDX or XRF may benefit

from a quantitative analysis by diffraction, as well as the reverse.

Thus, there is a need for a combined analysis, either based on

independent in situ or ex situ measurements of the same samples.

The question arises after this list of problems as to whether one

could benefit from the anisotropy of the material, and/or from the

multiple independent measurements necessary to carry out a

complete characterization of the real material. Such an approach

needs to take account of all the effects visible in the diffracted

signal, to measure a sufficient number of independent data with

different techniques when necessary, and perform a single fitting

of the full data by either least-squares or other suitable methods.

5.3.5.2. Intensity of a pattern and general scheme

If we consider a sample composed of NL layers (a bulk sample

is then equivalent to a single layer of infinite thickness) and N�

phases distributed in the layers, the intensity of a single data point

yc at 2� and � (see Section 5.3.2.1.3.3 for angle definitions) in a

diffractogram measured at a given sample orientation yS (yS
represents the sample orientation in the spectrometer space S, i.e.

defined by the goniometer angles !, � and ’) can be calculated as
the sum of all reflections contributing to that point for all phases

in all layers,

ycðyS; �; �Þ ¼ ybðyS; �; �Þ

þ I0

XNL

i¼1

XN�

�¼1

�i�
V2

c�

X

h

Lpð�Þj�hjF�hj2��hðyS; �; �Þ

� P�hðyS; �; �ÞAi�ðyS; �; �Þ;
ð5:3:63Þ

in which yb is the background contribution, I0 is the incident

intensity on the sample, �i� is the volumetric fraction of phase �
in layer i, Vc� is the unit-cell volume of phase �, Lp is the

Lorentz polarization factor, j�h is the multiplicity of line h for

phase �, |F�h| is the modulus of the structure factor (including

thermal vibrations) for line h of phase �, �i�h is the profile

function of line h for phase�, taking account of instrumental and

sample broadenings, P�h is the preferred orientation (pole-figure

value) of phase � and Ai� is an absorption factor which takes

into account the experimental and sample geometries.

In a similar way, we can write the intensity of a measured point

in a pattern for reflectivity and XRF or EDX. We will explicitly

write the equations for the diffraction part, but the procedure can

be extended to every technique for which a measured intensity

can be written in terms of the parameters describing the sample.

The overall weighted sum of squares, as in Rietveld joint

refinements, can then be written as a weighted sum between

different techniques, each measuring a certain number of

patterns and with each pattern t composed ofNtmeasured points:

WSS ¼P
Np

t¼1
ut
PNt

i¼0
witðyitc � yitoÞ2: ð5:3:64Þ

The weight wit is usually related to the inverse of the measured

intensity for point i of pattern t and is equal to the inverse of the

square of the standard deviation. Each pattern t is weighted using

the quantity ut, which should be used to adjust the importance

that we want to give to a particular technique or pattern with

respect to the others.

The quantity WSS must be minimized to find the optimized

parameters. The minimization can be performed through stan-

dard nonlinear least-squares methods or other minimization

schemes depending on the particular models that are used and

the efficiency of the algorithm for a given problem.

5.3.5.3. Minimum experimental requirements

This methodology requires a large amount of data, however,

and to be practical requires rapid acquisition using, for example,

multiple detectors. The first experiment using such an approach

was carried out with X-rays on a thin film (Ferrari & Lutterotti,

1994) on a laboratory texture instrument using a scintillator

detector. The first experiment of this kind using neutron TOF

data (Lutterotti et al., 1997) was performed on the General

Purpose Powder Diffractometer (GPPD) at the Intense Pulsed

Neutron Source (IPNS). Since then, the methodology has been

used for various purposes (Chateigner et al., 1998; Lutterotti et

al., 2002, 2004; Morales et al., 2002, 2005; Ricote et al., 2004;

Guilmeau et al., 2005).

The required diffractometer has to be equipped with four

circles in order to correspond to a texture experiment, i.e. at least

one tilt rotation �, one azimuthal rotation ’, an incidence circle !
and a detection circle 2�. One circle (one scanning movement)

can be eliminated by using a linear detector on the 2� arm.

Another circle and scan can be saved by using bidimensional

detectors.

5.3.5.4. Theoretical implementation

5.3.5.4.1. Instrumental broadening calibration

The spectrometer space is multidimensional, with each rota-

tion axis possibly giving rise to defocusing or misalignment

effects. Each of these aberrations has to be measured and

corrected for. For instance, in dealing with goniometer mis-

alignments (which should be minimized as much as possible by

careful alignment of the instrument and the sample) one can

model them to a certain extent in the computation by reprodu-

cing all effects of sample displacements, precession errors and

angle offsets. The fitting of instrument- and sample-misalignment

errors should only be used as a last resort, and a well performed

experiment is obviously always preferred. Fig. 5.3.19 is an illus-

tration of such aberrations measured on a KCl standard powder

using a four-circle diffractometer and a curved position-sensitive

detector (CPS 120 from Inel).

Three major effects are visible: peak broadening, peak shift

and background variation.

Broadening occurs when the incident beam illuminates the

sample surface, producing variations in the irradiated area and

the apparent Bragg-angle values. These were originally called
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‘defocusing effects’, even if the experimental setup does not

properly incorporate focusing optics (as in this case with the use

of a parallel beam). They are dependent on the various angles of

sample rotation.

When the sample tilt � increases, the peaks broaden. For a

square incident-beam cross section, the irradiated area on the flat

sample is a rectangle at � = 0� and becomes a parallelogram at

� > 0�. The beam-footprint size then increases, giving rise to

apparent �s and broadened peaks. For a bulk sample in

symmetric reflection geometry the total integrated intensity

remains constant whatever the value of � (Schulz, 1949a). This

implies that when using the full profile the defocusing effect is

automatically taken into account since the total integrated area

of the pattern is unchanged. However, at values of � that are too

large (typically >60�) the peak maxima decrease to values that

are closer to the background, and even the integrated intensities

are less reliable because of poorer counting statistics. This

obviously depends on the instrumental setup, such as the

detecting slit aperture, and can be partly compensated for by

using larger counting times at larger � values, but this always

remains a compromise. For instance, increasing the detecting slit

can provide a lower defocusing effect because of a larger inte-

grating window, but as a result enhances the instrumental

broadening and peak overlaps, and can prevent any micro-

structural analysis.

For a given diagram measured at !, the peaks are broader at

larger 2� (Fig. 5.3.20). This effect is typical of flat specimen

analyses; it does not occur, for instance, in transmission geometry

using neutrons. For a given peak at 2�, the full width at half

maximum (FWHM) is smaller at larger ! angles owing to the

smaller irradiated area of the sample. This effect also is typical of

flat specimen analyses in reflection geometry and using a parallel

beam.

In order to analyse the line broadening due to the character-

istics of the sample, all of the various instrumental broadenings

either have to be known from measuring the instrumental profiles

using a standard sample with a known sample broadening or must

be computed. The latter still requires the

measurement of certain characteristics such

as the tube focus.

A polynomial-like equation can then be

used to represent the variations in the

squared FWHM of the lines with the angles in

a similar fashion to the Caglioti formula

(Caglioti et al., 1958),

�rFWHM2 ¼ P
U

u¼0
prur

u; ð5:3:65Þ

with r as a general rotation (�, �, tan�, !,
�, . . . ) and with as many pru parameters as

necessary, introducing them progressively in

the refinement until they refine to negligible

values.

5.3.5.4.2. Peak-displacement errors

Peak shifts arise from the misalignment of

one or several of the rotation axes or sample

displacement from the rotation centre. For

instance, in Fig. 5.3.20 we clearly observe a 2�
peak shift for large � values and this shift

would not be the same at two different !
values. Depending on the experimental

configuration, analytical formulae can be produced to fit these

misalignments. If information about unit-cell parameters and/or

residual strain are important, it is advisable to either have a

perfectly aligned system or to use analytical formulae based on

the geometrical features of the misalignment. Other empirical

corrections are possible, based on polynomial fits or para-

metrizations per pattern, that are efficient for the correction of

the peak position, but are more likely to cause a loss of positional

information. These corrections are instrument dependent.

5.3.5.4.3. Background fitting

Furthermore, depending on many factors such as sample shape

and absorption, the background B can also vary with the various

angles of rotation. These variations have to be modelled, which is

usually accomplished through a polynomial fit on all rotation

axes,

�rB ¼
PU

u¼0
p0rur

u ð5:3:66Þ

or more complex functions such as Chebyshev polynomials

(Larson & Von Dreele, 2000; Press et al., 1988),

�rB ¼
PU

u¼0
p00ruTuðr�Þ; r� ¼ 2ðr� rminÞ

rmax � rmin

� 1; ð5:3:67Þ

where p0ru and p00ru are the factors to be determined. For Cheby-

shev polynomials the value of r must be substituted with r* to be

orthonormal, and rmin and rmax define the range of r.

Another option is to use an interpolated background which,

instead of being applied to the original pattern (not advisable in

Rietveld-like fitting), is applied to the residual pattern (the

experimental data minus the computed profile) as in MAUD

(Lutterotti, 2010). In this manner, the interpolation will not take

intensity from the reflections as long as these are properly fitted.

In QTA with point detectors background subtraction is never

easy; the evolution of background with rotation axes is not

easily measured (because of defocusing from nearby peaks, for

Figure 5.3.19
Illustration of the effects of defocusing and misadjustment on peak shapes and diffractometer
resolution function. Measurements are on KCl powder. Diffractograms appear on top of each
other from � = 0� to � = 60� in steps of 5� and were measured for ! = 20�.
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instance) and is sample dependent. Here, one can see another

advantage of full-profile analysis, where the background is not

removed a priori but is modelled along with the reflection

intensities.

5.3.5.4.4. Reflection intensities

Reflection intensities, as appearing in (5.3.63), depend mainly

on the structure factors described elsewhere in this volume.

Three different approaches are used to calculate them in the

combined-analysis scheme.

The first approach calculates the structure factors from the

atomic model with knowledge of the types and positions of the

atoms in the unit cell. If an accurate crystal structure is not

available for a particular phase, some information loss occurs

(mainly phase concentrations and layer information), but we can

still understand several other characteristics if at least an

indexing of the phase is available. For most of the other prop-

erties (texture, stresses, anisotropic crystallite sizes and micro-

strains etc.) only the Laue group and an initial estimation of the

unit-cell parameters are required. In this case, we can use the

other two approaches.

The second approach starts from knowledge of the Laue group

(or, better, the space group if available) and uses Le Bail or

Pawley refinement for the intensities. In the case of Pawley

refinement all of the reflection intensities become parameters to

be refined (this is exactly equivalent to a whole-pattern fitting),

and the exactly overlapped parameters should be treated as

summed to achieve convergence. Normally this approach is rapid

when the phase has a small number of reflections, but it becomes

Figure 5.3.20
(a) Randomly selected diagrams (at increasing � values and broadening due to defocusing from bottom to top) illustrating the quality of the fit,
together with the textures of AlN and Pt. (b) Two-dimensional plots of the 936 experimental (lower half) and fitted (upper half) diagrams and (c) two-
dimensional difference diagrams to reveal the errors.



575

5.3. QUANTITATIVE TEXTURE ANALYSIS

very difficult to carry out a fit when this number is very large. In

this latter case the Le Bail approach is more efficient, and one can

always switch to Pawley refinement just for the last iterations

when the fitting is already satisfactory. These two methods are

discussed in Chapter 3.5.

The third approach is a variant of the second, using an

electron-density map (or a nuclear-density map for neutron

diffraction) obtained from the extracted structure factors (using

either one of the two methods mentioned above) at each iteration

to calculate the intensities to be used in the fitting. This will force

the structural intensities to be compatible with an electron-

density map, providing a strong constraint for the severely

overlapped peaks. It is assumed that by iteration the problem will

converge toward the real electron-density map, but this cannot be

ensured.

When associated with a strong texture of the sample, the

second and third approaches can be used to obtain single-crystal-

like structure factors that can be used to obtain the structure, as

described by Wessels et al. (1999) and in a more recent variant in

which texture and structure factors are extracted simultaneously

from the same data (Lutterotti & Bortolotti, 2005; Grässlin et al.,

2015).

5.3.5.4.5. Line profiles and sample broadening

Profile functions are described as a convolution of two terms:

the instrumental broadening and the sample broadening. In the

combined approach we utilize the two explicitly separated

contributions to perform refinement directly using the micro-

structural characteristics as parameters (Lutterotti & Scardi,

1990; Lutterotti & Gialanella, 1998; Lutterotti, 2010). If the

instrumental broadening is known (see Section 5.3.5.4.1) we only

need to refine the parameters concerning the sample broadening,

and the best approach to ensure better convergence and more

reliable results is to describe the sample broadening using

physical quantities.

With respect to line-broadening theories, we note here that for

this method we need equations and methods that allow compu-

tation of the sample-broadening profile from the microstructural

characteristics and not the reverse.

These methods can be divided into two categories. The first

category contains methods that describe the sample broadening

using analytical functions, for which theory describes the

variation of the parameters as a function of the scattering

unit caused by the microstructural characteristics (Lutterotti

& Scardi, 1990; Lutterotti & Gialanella, 1998). The second

category does not impose analytical functions on the profile,

but instead computes the profile directly from the crystallite size

and microstrain distributions using the interference function

(Lutterotti & Scardi, 1992), the Fourier transform (Ungár et al.,

2001; Lutterotti, 2010) or analytical approximations (Popa &

Balzar, 2002). In the latter case it is the analytical shape of the

distribution that is imposed. The crystallite and microstrain

anisotropies, which cause anisotropy of the reflection broad-

enings, have been described previously by empirical formulae

(Lutterotti & Scardi, 1990) or by taking into account the crys-

tallographic symmetry restrictions (Popa, 1998), and can be

coupled with the distribution-calculation method (Popa & Balzar,

2008).

In addition to crystallite sizes and microstrains, other micro-

structural characteristics have been included in the combined

analysis as planar defects following Warren theory (Warren, 1969;

Lutterotti & Gialanella, 1998) or turbostratic disorders (Ufer et

al., 2004; Lutterotti et al., 2010); these are useful in the case of

clay or graphitic materials.

5.3.5.4.6. Texture computation

The texture factors in (5.3.63) can be computed using one of

the methods reported in Section 5.3.4 for Rietveld analysis, but

only those associated with an OD computation, i.e. all but the

empirical methods such as the March–Dollase and Donnet–

Jouanneaux methods.

To ensure a physically meaningful texture analysis, two kinds

of approach can be used in the combined analysis. The first is

applicable when the pole figures can be computed through

analytical functions containing the parameters to be refined. This

is the case for the harmonic, exponential-harmonic and standard-

components methods in Section 5.3.4. The implementation and

the use of such methodologies is quite straightforward in the

Rietveld framework.

A different case is the second approach (WIMV/EWIMV), in

which there is no analytical function either to describe the OD or

to compute the pole-figure values. This is performed through

numerical integration using a discrete function with a very large

number of unknowns. Therefore, by analogy to the electron-

density case with structure factors, the method is to extract the

texture values from patterns and use them to compute the OD,

from which we can compute the texture value for the next

Rietveld-like iteration step.

The extraction of the texture value (the difference between the

random value and the measured value) can be performed using a

modified Le Bail algorithm (Matthies et al., 1997) working on the

texture values instead of the structure factors. The resulting

‘experimental’ pole-figure values are used by the WIMV or

EWIMValgorithms to compute the OD. After this, a final fitting

of the patterns is performed using the quantities calculated from

the OD as the texture values. In the case of WIMVan additional

step is required before computing the OD, as WIMV requires the

pole-figure data in a regular grid over the pole figures, and a cubic

interpolation is used for this. On the other hand, EWIMV does

not require such regular grids.

Much care is mandatory in using all of these methods in order

to ensure that the measured data are sufficient to experimentally

cover the entire OD. This can easily be checked using discrete

methods such as WIMV/EWIMV, but not with others that may

apparently work (output an OD) without having full coverage

and thus with values for the uncovered part that depend on the

assumptions made (for example, intrinsically when assuming an

inappropriate specific texture symmetry as in the March–Dollase

method or extrinsically when the unmeasured parts would have

contained most of the texture information).

5.3.5.4.7. Residual strains/stresses and evaluation of macro-
scopic tensors

In the presence of residual stresses, diagrams measured at

several tilt angles exhibit peak shifts that cannot be reproduced

without correct modelling of the sample residual strains. These

come from the macrostresses and microstresses in the sample and

also depend on the crystallite orientations (ODs). There are two

different methods to approach this problem in combined analysis.

One makes use of elasticity theories and models the strains and

thus the reflection shifts from the stresses; the other instead

directly models the strains without any assumption about the

relationship between strains and stresses.
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In the first approach, defining KL = (XL, YL, ZL), a laboratory

frame in which ZL is coincident with the scattering vector,XL lies

in the plane defined by the incident and diffracted beams and is

directed towards the detector, and YL = (ZL � XL), the defor-

mation of the diffracting plane (direction 33 for the deformation

tensor in KL) is then

"L33ð
; h; yÞ ¼
1

4� ~PhðyÞ
R

hky
"L33ð
; gÞf ðgÞ d ~’þ

R

�hky
"L33ð
; gÞf ðgÞ d ~’

" #


 SL33klðh; yÞ
Lkl: ð5:3:68Þ
The crystallographic strain "L33ð
; gÞ depends on the macro-

stresses through the stress factor SL33klðh; yÞ (Behnken & Hauk,

1991), and several schemes have been proposed to calculate it in

the presence of texture using different averages over orientations

as a theoretical basis. The most used are the Voigt (1928), Reuss

(1929) and Hill (1952) models. In the Voigt case the stress factor

does not depend on h and it imposes a linear behaviour in sin2 ,
whereas in the Reuss case it does not. The Voigt and Reuss

models define upper and lower bounds, respectively, for the

macrostresses, the macroscopic elastic constants (those of the real

sample) and their average, but do not ensure the consistency of

elastic properties (simultaneous stress and strain equilibria).

Such consistency for elastic properties requires that the homo-

genized sample stiffness, hCi, should be equal to the inverse of

the homogenized compliance, hSi�1. Neither of the methods

mentioned above meet this criterion. On the contrary, the

geometric-mean approach guarantees such consistency.

Considering an ensemble of N grains, with each grainm having

a volume fraction �m and with Sm being the single-crystal

compliance tensor of the grain rotated in the sample reference

frame, the arithmetic mean is then

hSi�1a ¼
PN

m¼1
�mSm

� ��1
6¼ PN

m¼1
�mS

�1
m ¼ hS�1ia ¼ hCigeo; ð5:3:69Þ

where the left-hand and right-hand sides correspond to the

arithmetic averaging in the Reuss and Voigt hypotheses,

respectively. Instead, for the geometric mean (Matthies &

Humbert, 1993) the inversion property is guaranteed,

hSi�1geo ¼ exp �P
N

m¼1
�m ln Sm

� �

¼ exp
PN

m¼1
�m ln S�1m

� �

¼ hS�1igeo ¼ hCigeo
or

hSi�1geo ¼
QN

m¼1
S
�m
m

� ��1
¼ QN

m¼1
S
��m
m ¼ QN

m¼1
ðS�1m Þ�m

¼ hS�1igeo ¼ hCigeo: ð5:3:70Þ
Replacing the subscript m with the rotation g to bring the crystal

tensor into the sample frame, using the explicit notation with four

indices for the rank-4 compliance tensor and replacing the

summation with the integral over H space, we obtain

hSijklia ¼
R

H

S0ijklðgÞf ðgÞ dg; S0ijklðgÞ ¼
P3

m;n;p;q¼1
gmignjgpkgqlSmnpq;

hSijkligeo ¼ hðln SÞijklia: ð5:3:71Þ
This modelling gives good estimates of the macroscopic elastic

properties (Matthies & Humbert, 1995) and does not result in

large calculation times, i.e. it is suitable for implementation in the

routine combined algorithm to calculate the strain tensor inside

the crystallite from the macrostresses of the sample.

Using (5.3.68), we make the hypothesis that the strains are

constant inside the sample (the Voigt hypothesis), the macro

elastic tensor is computed using the arithmetic mean of the

stiffness and everything reduces to the analogous sin2 method.

If we consider the stresses in the sample to be constant, the elastic

tensor is computed through the Reuss hypothesis or the average

of the compliance tensor.

We examine here the interesting case of the geometric mean,

where neither the stresses nor the strains are constant throughout

the sample but vary as a function of grain orientation. This is the

inverse problem with respect to the homogenization technique

[equations (5.3.70) and (5.3.71)]. This case has been solved by

Matthies and co-workers (Matthies et al., 2001; Matthies & Vinel,

1994) in a two-step process. Let us first obtain the solution by

using the geometric mean (GEO) method to directly compute the

so-called pathGEO approximation. Writing the stress factor

using the Reuss hypothesis,

SL33klðh; yÞ ¼ ReussS
L;p
33kl

¼ 1

4� ~PhðyÞ
R

hky
S033klðgÞf ðgÞ d ~’þ

R

�hky
S033klðgÞf ðgÞ d ~’

" #

;

ð5:3:72Þ

in analogy, the pathGEO approximation gives

SL33klðh; yÞ ¼ pathGEOS
L;p
33kl

¼ exp
1

4� ~PhðyÞ
R

hky
S033klðgÞf ðgÞ d ~’þ

R

�hky
S033klðgÞf ðgÞ d ~’

" #( )

:

ð5:3:73Þ

In the latter equation, we neglect the interaction of the matrix

surrounding the crystallites. Adding it to the formulation, we

obtain the final Bulk-PathGEO (BPG) formulation (Matthies &

Humbert, 1995; Matthies et al., 2001),

SL;BPG ¼ hSiLgeopathGEOSL

 �1=2h isym

; ð5:3:74Þ

and we are interested in the SL;BPG33kl components of (5.3.68).

Another approach has been developed which does not

consider the nature of the residual stresses and may be more

appropriate in the case of plastic deformation or when pure

elastic strains/stresses are not present. The method aims to use

the Rietveld method to extract the crystallographic stresses in

order to obtain the so-called stress orientation distribution

function (SODF). Details can be found in Wang et al. (2000,

2003).

In combined analysis, a variant of this method is used that is

more suitable for implementation in a Rietveld code. This variant

(Popa & Balzar, 2001) considers that texture and stresses are

always coupled by (5.3.68), and instead of using the SODF it

defines a so-called WSODF (weighted-strain ODF) that is the

product of the crystallographic OD and the SODF. This simplifies

the formalism greatly and avoids the propagation of the errors

present in the OD to the SODF (which is one of the problems of

the original method). The WSODF (and similarly the SODF) is

then expanded using spherical harmonics, and the right-hand side

of (5.3.68) can be written in terms of harmonic coefficients to be

refined. We refer the reader to the original paper for details of the

symmetrization and implementation.
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5.3.5.4.8. Absorption and layers

Computation of the absorption is another important part of

the approach, especially considering some samples that do

not meet the requirements of standard computation (Bragg–

Brentano: specimen completely intercepts the beam, homo-

geneity inside the volume, infinite thickness; Debye–Scherrer:

cylindrical or spherical shape, sample inside the beam, light

absorber). In the simple case of a thin film or multilayers we

already have a heterogeneous sample and special treatment of

the absorption correction is needed. Another case is an irregular

shape or a strong absorber in Debye–Scherrer geometry.

For multilayers, a first implementation to correctly approach

the problem in a Bragg–Brentano geometry (Lutterotti et al.,

1993) is aimed at phase analysis in the layers. For a more

comprehensive absorption correction for a multilayer sample

that includes all possible geometries and cases, Simek et al. (2006)

developed a correction that depends only on the incident angle �i
of the beam (with respect to the plane parallel to the layering and

surface of the sample) and the exit angle �o,

Ai� ¼
�i� sin �i sin �o
�iðsin �i þ sin �oÞ

½1� expð��i�iWÞ�
Q

k<i

expð��k�kWÞ;

W ¼ 1

sin �i
þ 1

sin �o
; ð5:3:75Þ

where �i ¼
PN�

�¼1 �i��i� is the average linear

absorption coefficient for layer i, �i� is the

absorption coefficient of phase � in layer i

and �i is the thickness of layer i.

In the Debye–Scherrer geometry with

either a strong absorber or an irregular

sample shape, special care should be taken

with the absorption computation. A general

procedure has been developed (Xie et al.,

2004; Volz et al., 2006) that represents the

sample shape using the same harmonic

expansion formulae as for the anisotropic

crystallites (Popa, 1998) and uses a discretized

integration of the beam path through the

sample volume or a simplified path through

the centre only (for computational speed;

however, the shape refined is no longer

representative of the sample).

5.3.5.5. Implementation

The combined-analysis software should

allow the possibility of using X-ray (classical,

synchrotron, monochromatic or energy dis-

persive, all scanning strategies and geome-

tries, zero-dimensional, one-dimensional, flat and curved two-

dimensional detectors) as well as neutron (thermal and TOF) or

even electron data. It should be able to incorporate all formal-

isms corresponding to residual stress analysis (RSA), X-ray

specular reflectivity, qualitative microstructure analysis, struc-

ture, QPA etc. and index diagrams for phase identification in an

automatic approach [such as using the Crystallography Open

Database (Grazulis et al., 2009) or the Powder Diffraction File

(Fawcett et al., 2017)]. If the RSA of textured materials is of

interest it should also offer tensor homogenization, openly

accessing single-crystal tensors (Pepponi et al., 2012). All of these

requirement are actually met in the MAUD software (Lutterotti,

2010).

5.3.5.6. Examination of a solution

Using single-pattern refinement, a simple examination of the

modelled and measured diagrams can suffice to detect refinement

problems or refinement quality. When several hundreds of

patterns are refined, such a comparison is cumbersome or simply

impossible. One possibility to rapidly check whether the chosen

Table 5.3.2
Results obtained from combined analysis on an AlN/Pt/TiOx/Al2O3/Ni(Co–Cr–Al–Y) stack

Standard deviations are given in parentheses for the last digit.

AlN Pt Al2O3 Ni(Co–Cr–Al–Y)

Unit-cell parameters (Å) a = 3.11203 (1),
c = 4.98252 (1)

a = 3.91198 (1) a = 4.7562 (6),
c = 12.875 (3)

a = 3.569377 (5)

Effective layer (nm) 14270 (3) 1204 (3) 7790 (31) 1
Isotropic mean crystallite size (Å) 2404 (8) 2173 (10) 150 (2) 7600 (1900)
Isotropic mean microstrain (r.m.s.) 0.001853 (2) 0.002410 (3) 0.008 (3) 0.00236 (3)
Biaxial macrostresses (MPa) 
11 = �1019 (2),


22 = �845 (2)

11 = �196.5 (8),

22 = �99.6 (6)

Not fitted 
11 = �328 (8),

22 = �411 (9)

F 2 (m.r.d.2) 9.30 5.36 — 1.04
OD R factors (%) Rw = 4.09, Rb = 4.41 Rw = 33.25, Rb = 26.63 — Rw = 49.15, Rb = 37.38

Figure 5.3.21
Low-index recalculated pole figures and ZA inverse pole figures for the three textured phases
of the stack. (a) AlN, (b) Pt, (c) Ni-based alloy. Equal-area density projections, linear density
scale.
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model is correct is to randomly select a small set of diffraction

patterns to plot (Fig. 5.3.20a). However, such a method cannot

prevent local strong discrepancies unless each diagram is exam-

ined in a laborious way. One can overcome this problem by

plotting (for instance for an AlN/Pt/Al2O3/Ni alloy stack) all of

the diagrams in a two-dimensional view (Fig. 5.3.20b), and

completing the solution examination using two-dimensional

residuals (Fig. 5.3.20c) in order to see where the main improve-

ments to the model have to be carried out.

In such a case, combined analysis provides the characterization

of the three ODs of Ni alloy, Pt and AlN, their respective biaxial

residual stress states and structures. The layer thicknesses are

also obtained with the crystallite isotropic sizes. The biaxial stress

states are obtained using the geometric mean approach. All of

the results are summarized in Table 5.3.2. These results were

obtained within reliability factors of Rw = 24.12% and Rexp =

5.85% on 936 diagrams with a goodness of fit of 1.51.

The low-index pole figures of the three textured phases (Fig.

5.3.21) exhibit fibre textures with the fibre axis shifted slightly

from the normal to the film plane ZA. The substrate alloy shows

the lowest texture strength; it is further increased in the Pt

electrode and in the AlN film. This illustrates the electrical bias

effect applied to the AlN orientation during sputtering, with a

pronounced maximum of the {001} pole figure along ZA of

around 28 m.r.d. The Pt electrode exhibits a classical {111}

orientation, with a slight tilt, while the Ni alloy is predominantly

oriented with the {200} planes parallel to the sample plane.

However, the corresponding inverse pole figures show that if AlN

and Pt have a unique fibre orientation component, the Ni-alloy

substrate also shows some minor fibre components.

The corresponding data for this example and many others can

be found at http://www.ecole.ensicaen.fr/~chateign/formation/,

together with some tutorials.

5.3.6. Conclusions

Classical quantitative texture analysis (and also residual stress,

line broadening, phase composition etc.) becomes of question-

able value for real samples that exhibit complex architectures

with several phases and strong intra- and inter-phase peak

overlapping. This is particularly true for poorly crystallized or

nanocrystallized samples, for which line broadening is further

enhanced. Proper deconvolution has to be carried out in such

cases, which requires the use of full-pattern analysis in order to

properly separate the various contributions to the diffraction

diagrams (residual stresses, structure, phase content etc.). This

can be elegantly achieved using the combined-analysis approach

using X-rays, neutrons, electrons and ad hoc measurements.
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